Evaluation of Thermo Tolerance of 'Nistari' an Indigenous Strain of Multivoltine Silkworm, Bombyx mori L.

  • Moorthy, S.M. (Central Sericultural Research and Training Institute) ;
  • Das, S.K. (Central Sericultural Research and Training Institute) ;
  • Mukhopadhyay, S.K. (Central Sericultural Research and Training Institute) ;
  • Mandal, K. (Central Sericultural Research and Training Institute) ;
  • Urs, S. Raje (Seri biotech research laboratory)
  • Published : 2007.09.30

Abstract

An indigenous multivoltine silkworm, Nistari was evaluated for their thermo tolerance by exposing the larvae to various temperature regimes for eight hours. Among different temperature exposed, this strain has significant tolerance at $32^{\circ}C$. Analysis of heat shock protein revealed the expression of 70 kDa and 64 kDa polypeptides in fat body and midgut tissues. Interestingly esterase isozyme pattern in midgut showed characteristic expression of Est-1 and Est-3 at different temperatures signifying role in heat and cold shock.

Keywords

References

  1. Bijlsma, R. and V.Loeschecke (1997) Environmental stress, Adaptation and Evolution. Birkauser, Verlag, Basel
  2. Cavicchi, S., D.Guerra, V. La Torre and R.B. Huey (1995) Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temperatures in the laboratory. Evolution 49, 676-684 https://doi.org/10.2307/2410321
  3. Chavadi, V.B., A. H. Sosalegowda and M. H. Boregowda (2006) Impact of heat shock on heat shock proteins expressions, biological and commercial traits of Bombyx mori. Insect Science 13, 243-250 https://doi.org/10.1111/j.1744-7917.2006.00090.x
  4. Cochrane, J. (1976) Heat-stability variants of esterase -6 in Drosophila melanogaster. Nature 263,131-132 https://doi.org/10.1038/263131a0
  5. Dahlhoff, E.P. and N. E. Rank (2000) Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme phenotype in a montane leaf beetle. Proceedings of the National Academy of Sciences USA, 97, 10056-10061
  6. David, J.R., P. Gilbert, B. Moreteau, G.M. Gilchrist and R.B. Huey (2003) The fly that came in from the cold: geographic variation of recovery time from low-temperature exposure in Drosophila subobscura. Funct Ecol, 17, 425-430 https://doi.org/10.1046/j.1365-2435.2003.00750.x
  7. Denlinger, D.L., K.H. Joplin, C. P. Chen and R. E. Lee (1991) Cold shock and Heat shock ; in Insects at low temperature. Lee R.E. and D.L.Denlinger (eds.), pp.131-148, Chapman Hall, New York
  8. Feder, M.E. and G.F. Hofmann (1999) Heat shock proteins, molecular chaperons and the stress response; evolutionary and ecological physiology. Ann. Rev. Physiol 61, 243-282 https://doi.org/10.1146/annurev.physiol.61.1.243
  9. Garcia, S.L., N. L. Garcia, L. R. Olivera, V.L.C.C. Rodrigues and M.L.S. Mello (2003) Experimentally induced heat and cold shock tolerance in adult Panstrongylus megistus (Burmeister) (Hemiptera, Reduviidae). Brazilian Journal of Biology 63, 449-455 https://doi.org/10.1590/S1519-69842003000300010
  10. Gilchrist, GW. and R.B. Huey (1999) The direct response of Drosophila melanogaster to selection on knockdown temperature. Heredity 83, 15-29 https://doi.org/10.1038/sj.hdy.6885330
  11. Harris, H. and D.A. Hopkinson (1977) Hand book of Enzyme Electrophoresis in Human Genetics. North Holland publishing Co, Amsterdem. pp. 297
  12. Hoffmann, A. A. and P.A.Parsons (1991) Evolutionary Genetics of Environmental Stress. Oxford University Press, Oxford
  13. Hoffmann, A.A., J.G. Sorensen and V. Loeschcke (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Thermal Biol, 28, 175-216 https://doi.org/10.1016/S0306-4565(02)00057-8
  14. Joplin, K.H. and D. L. Denlinger (1990) Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the fresh fly Sarophaga crassipalpis. J. Insect. Physiol, 36, 239-249 https://doi.org/10.1016/0022-1910(90)90108-R
  15. Krebs, R. A., E. F. Martin and J. Lee (1998) Heritability expression of the 70 kD heat shock protein Drosophila melanogaster and its relevance to the evolution of thermo tolerance. Evolution 52, 841-847 https://doi.org/10.2307/2411278
  16. Koehn, R.K., I. Newell and F. Immermann (1980) Maintenance of an aminopeptidase allele frequency cline by natural selection. Proceedings of the National Academy of Sciences USA, 77, 5385-5389
  17. Lammelli, U.K .(1970) Cleavage of structural proteins of the head of bacteriophage T4; Nature 227, 680-685 https://doi.org/10.1038/227680a0
  18. Lee, R.E., C. P. Chen and D.L. Denlinger (1987) A rapid cold hardening process in insects. Science 238, 1415-1417 https://doi.org/10.1126/science.238.4832.1415
  19. Lindquist, S. (1980) Translation efficiency of heat induced messages in Drosophila melanogaster cells. J. Mol. Biol, 137,151-158 https://doi.org/10.1016/0022-2836(80)90322-8
  20. Lindquist, S. (1986) The heat shock response. Ann. Rev. Biochem, 55, 1151-1191 https://doi.org/10.1146/annurev.bi.55.070186.005443
  21. Liu, Z.G., M. Kobayashi and N.Yoshitake (1984) Genetical studies o the heat-stable esterase in the mid gut of the silkworm, Bombyx mori. J Seri. Sci. Jpn, 53, 432-435
  22. Lohmann, C.M.F. and L.M Riddiford, (1990) Heat sensitivity and protein synthesis during heat shock in tobacco hom worms Manduca sexta. J. Comp. Physiol, B160, 349-356
  23. May, M. (1985) Thermoregulation; in Comprehensive insect physiology biochemistry and pharmacology, Kerkut, G.A . and L.I. Gilbert (eds.), Vol, 4, pp. 507-552. Pergman press, New york
  24. Morrison, W.W .and R. Milkman (1978) Modification of heat resistance in Drosophila by selection. Nature 273, 49-50
  25. Neargarder, G., E.P. Dahlhoff and N.E.Rank (2003) Variation in thermal tolerance is linked to phosphoglucose isomerase genotype in a montane leaf beetle. Functional Ecology 17, 213-221 https://doi.org/10.1046/j.1365-2435.2003.00722.x
  26. Omana Joy. and K.P.Gopinathan (1995) Heat shock response in mulberry silkworm races with different thermotolerances. J. Bio. Sci, 20, 499-513 https://doi.org/10.1007/BF02703533
  27. Rohmer, C., J.R. David, B.Moreteau and D. Joly (2004) Heat induced male sterility in Drosophila melanogaster: adaptive genetic variations among geographic populations and role of the Y chromosome. J Exp Biol 207, 2735-2743 https://doi.org/10.1242/jeb.01087
  28. Samad, H. El., H. Kurata, J. C. Doyle, C. A. Gross and M. Khammash (2005) Surviving heat shock: Control strategies for robustness and performance. Proceedings of the national academy of the sciences USA, 102, 2736-2741
  29. Singh, A.K. and S. C.Lakhotia (1999). Tissue specific variations in the induction of Hsp 70 and Hsp 64 by heat shock in insects. Cell stress and Chaperones 56, 90-97
  30. Storey, K.B. and Storey, J.M (1992) Biochemical adaptations for winter survival in insects. Advances in low temperature biology 1,101-140
  31. Tucic, N. (1979) Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33, 350-358 https://doi.org/10.2307/2407625
  32. Watanabe, M., T. Kikawada, N.Minagawa, F.Yukuhiro and T. Okuda (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperature. J. Expt.Biol, 205, 2799-2802
  33. Watt, W.B., R.C. Cassin and M.S.Swan (1983) Adaptation of specific 10ci.1Il. Field behaviour and survivorship differences among Colias pgi genotypes are predictable from in vitro biochemistry. Genetics 103, 725-729
  34. Watt, W.B. (1992) Eggs, enzymes and evolution: natural genetic variants change insect fecundity. Proceedings of the National Academy of Sciences USA, 89, 10608-10612
  35. Wolfe, G.R. , D.L.Hendrix and M.E.Salvuchi (1998) A thermoprotective role for sorbitol in the silverleaf whitefly Bemisia argentifolii. J. lnset Physiol 44, 597-603 https://doi.org/10.1016/S0022-1910(98)00035-3
  36. Wu, Den-Jen. and R.F.Hou (1993) Relationship between thermostable and heat stable esterase in the silkworm, Bombyx mort (Lepidoptera: Bombycidae). AppI. Ento. Zool, 28, 371-377 https://doi.org/10.1303/aez.28.371