DOI QR코드

DOI QR Code

Analysis of Topological Properties for Folded Hyper-Star FHS(2n,n)

Folded 하이퍼-스타 FHS(2n,n)의 위상적 성질 분석

  • 김종석 (오클라호마 주립대학교 컴퓨터과학과)
  • Published : 2007.10.31

Abstract

In this paper, we analyze some topological properties of Folded Hyper-Star FHS(2n,n). First, we prove that FHS(2n,n) has maximal fault tolerance, and broadcasting time using double rooted spanning tree is 2n-1. Also we show that FHS(2n,n) can be embedded into Folded hypercube with dilation 1, and Folded hypercube can be embedded into FHS(2n,n) ith dilation 2 and congestion 1.

본 논문에서는 Folded 하이퍼-스타 FHS(2n,n)의 위상적 성질들을 분석한다. 먼저, FHS(2n,n)이 최대고장허용도를 가짐을 보이고, double rooted 스패닝 트리를 이용한 방송 수행 시간이 2n-1임을 보인다. 그리고 FHS(2n,n)이 Folded 하이퍼큐브에 연장율 1로 임베딩 가능함을 보이고, Folded 하이퍼큐브가 FHS(2n,n)에 연장율 2, 밀집율 1로 임베딩 가능함을 보인다.

Keywords

References

  1. C.-P. Chang, T.-Y. Sung, and L.-H. Hsu, 'Edge Congestion and Topological Properties of Crossed Cubes,' IEEE Trans. Parallel and Distributed Systems, vol.11, no.1, pp.64-80, 2000 https://doi.org/10.1109/71.824643
  2. E. Cheng and L. Liptak, 'Structural properties of hyper-stars,' Ars Combinatoria, vol.80, pp.65-73, 2006
  3. E. Cheng and M. Shah, 'A strong structural theorem for hyper-stars,' Congressus Numerantium, vol.179 pp.181-191, 2006
  4. K. Efe, 'A Variation on the Hypercube with Lower Diameter,' IEEE Trans. Computers, vol.40, no.11, pp.1312-1316, 1991 https://doi.org/10.1109/12.102840
  5. A. H. Esfahanian, L. M. Ni and B. E. Sagan, 'The Twisted N-Cube with Application to Multiprocessing,' IEEE Trans. Computers, vol.40, no.1, pp.88-93, 1991 https://doi.org/10.1109/12.67323
  6. J Fan, X. Lin, and X. Jia, 'Optimal Path Embedding in Crossed Cubes,' IEEE Trans. Parallel and Distributed Systems, vol.16, no.12, pp.1190-1200, 2005 https://doi.org/10.1109/TPDS.2005.151
  7. S.-Y. Hsieh and N.-W. Chang, 'Hamiltonian Path Embedding and Pancyclicity on The Mobius Cube with Faulty Nodes and Faulty Edges,' IEEE Trans. Computers, vol.55, no.7, pp.854-863, 2006 https://doi.org/10.1109/TC.2006.104
  8. S. L. Iohnsson, 'Communication Efficient Basic Linear Algebra Computations on Hypercube Architectures,' J. Parallel and Distributed Computing, vol.4, pp.133-172, 1987 https://doi.org/10.1016/0743-7315(87)90002-5
  9. J-S. Kim, E. Oh, H.-O. Lim, and Y.-N. Heo, 'Topological and communication aspects of hyper-star graphs,' Lecture Notes in Computer Science 2869, pp. 51-58. 2003
  10. J. Kim and K-G. Shin, 'Operationally Enhanced Folded Hypercubes,' IEEE Trans. Parallel and Distributed Systems, vol.5, no.12, pp.1310-1316, 1994 https://doi.org/10.1109/71.334904
  11. J. M. Kumar and M. Patnaik, 'Extended Hypercube: A Hierarchical Interconnection Network of Hypercubes,' IEEE Trans. Parallel and Distributed Systems, vol.3, no.1, pp.45-57, Jan. 1992 https://doi.org/10.1109/71.113081
  12. C.-N. Lai, G.-H. Chen, and D.-R. Duh, 'Constructing One-to-Many Disjoint Paths in Folded Hypercubes,' IEEE Trans. Computers, vol.51, no.1, pp.33-45, 2002 https://doi.org/10.1109/12.980015
  13. H.-O. Lee, J.-S. Kim, E. Oh, H.-S. Lim, 'Hyper-Star Graph: A New Interconnection Network Improving the Network Cost of the Hypercube,' Lecture Notes in Computer Science 2510, pp.858-865, 2002 https://doi.org/10.1007/3-540-36087-5_99
  14. N. F. Tzeng and S. Wei, 'Enhanced Hypercube,' IEEE Trans. Computers, vol.40, no.3, pp.284-294, 1991 https://doi.org/10.1109/12.76405

Cited by

  1. Embedding Algorithms of Hierarchical Folded HyperStar Network vol.16A, pp.4, 2009, https://doi.org/10.3745/KIPSTA.2009.16-A.4.299