DOI QR코드

DOI QR Code

차분진화 기반의 Support Vector Clustering

A Differential Evolution based Support Vector Clustering

  • 전성해 (청주대학교 바이오정보통계학과)
  • 발행 : 2007.10.25

초록

Vapnik의 통계적 학습이론은 분류, 회귀, 그리고 군집화를 위하여 SVM(support vector machine), SVR(support vector regression), 그리고 SVC(support vector clustering)의 3가지 학습 알고리즘을 포함한다. 이들 중에서 SVC는 가우시안 커널함수에 기반한 지지벡터를 이용하여 비교적 우수한 군집화 결과를 제공하고 있다. 하지만 SVM, SVR과 마찬가지로 SVC도 커널모수와 정규화상수에 대한 최적결정이 요구된다 하지만 대부분의 분석작업에서 사용자의 주관적 경험에 의존하거나 격자탐색과 같이 많은 컴퓨팅 시간을 요구하는 전략에 의존하고 있다. 본 논문에서는 SVC에서 사용되는 커널모수와 정규화상수의 효율적인 결정을 위하여 차분진화를 이용한 DESVC(differential evolution based SVC)를 제안한다 UCI Machine Learning repository의 학습데이터와 시뮬레이션 데이터 집합들을 이용한 실험을 통하여 기존의 기계학습 알고리즘과의 성능평가를 수행한다.

Statistical learning theory by Vapnik consists of support vector machine(SVM), support vector regression(SVR), and support vector clustering(SVC) for classification, regression, and clustering respectively. In this algorithms, SVC is good clustering algorithm using support vectors based on Gaussian kernel function. But, similar to SVM and SVR, SVC needs to determine kernel parameters and regularization constant optimally. In general, the parameters have been determined by the arts of researchers and grid search which is demanded computing time heavily. In this paper, we propose a differential evolution based SVC(DESVC) which combines differential evolution into SVC for efficient selection of kernel parameters and regularization constant. To verify improved performance of our DESVC, we make experiments using the data sets from UCI machine learning repository and simulation.

키워드

참고문헌

  1. 최병인, 이정훈, 'Support Vector Machines를 이용한 Convex 클러스터 결합 알고리즘', 한국퍼지 및 지능시스템학회 2002 추계학술대회 논문지 pp 267-270, 2002
  2. 최준혁, 전성해, 오경환, '통계적 학습이론을 이용한 최적군집화', 한국퍼지 및 지능 시스템학회 2005 추계 학술대회 논문지, 2005
  3. A. Ben-Hur, D. Hom, H. T. Siegelmann, V. Vapnik, 'Support Vector Clustering' , Journal of Machine Learning Research, Vol. 2, pp. 125-137, 2001 https://doi.org/10.1162/15324430260185565
  4. C. J. Burges, 'A Tutorial on Support Vector Machine for Pattern Recognition', Data Mining and Knowledge Discovery, Vol. 2, no. 2, pp. 121-167, 1998 https://doi.org/10.1023/A:1009715923555
  5. J. C. Chiang, J. S. Wang, 'A Validity-Guided Support Vector Clustering Algorithm for Identification of Optimal Cluster Configuration', Proceeding of IEEE International Conference on Systems, Man and Cybernetics, pp. 3613-361, 2004
  6. A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Springer, 2003
  7. A. P. Engelbrecht, Computational Intelligence An Introduction, Wiley, 2002
  8. J. Han, M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann, 2001
  9. S. Haykin, Neural Networks A Comprehensive Foundation, Prentice Hall, 1999
  10. S. H. jun, Web Usage Mining Using Evolutionary Support Vector Machine, Lecture Note in Artificial Intelligence, Vol. 3809, pp. 1015-1020, 2005 https://doi.org/10.1007/11589990_132
  11. K. Krishna, K. Narasimha Murty, 'Genetic K-means algorithm', IEEE Transactions on Systems, Man and Cybernetics, part B, Vol. 29, no. 3, pp. 433-439, 1999 https://doi.org/10.1109/3477.764879
  12. J. Lee, D. Lee, 'An Improved Cluster Labeling Method for Support Vector Clustering', IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, no. 3, pp. 461-464, 2005 https://doi.org/10.1109/TPAMI.2005.47
  13. W. L. Martinez, A. R. Martinez, Computational Statistics Handbook with MATRAB, Chapman & Hall, 2002
  14. G. Mclachlan, D. Peel, Finite Mixture Models, John Wiley & Sons, 2000
  15. S. M. Ross, Simulation, Academic Press, 1997
  16. R. Storn, K. V. Price, 'Differential Evolution-a fast and efficient heuristic for global optimization over continuous spaces', Journal of Global Optimization, Vol. 11, pp. 341-359, 1997 https://doi.org/10.1023/A:1008202821328
  17. B. Y. Sun, D. S. Huang, 'Support Vector Clustering for Multiclass Classification Problems', Proceeding of IEEE Evolutionary Computation Congress, pp. 1480-1485, 2003
  18. UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLRepository.html
  19. V. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998