DOI QR코드

DOI QR Code

A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm

유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구

  • 공정식 (대덕대학 마이크로로봇과) ;
  • 김진걸 (인하대학교 전자전기공학부)
  • Published : 2007.10.25

Abstract

This paper presents a joint controller for a humanoid robot based on genetic algorithm. h humanoid robot has basically instability during walking because it isn't fixed on the ground. Moreover nonlinearities of the joints increase its instability. If one of them isn't satisfied, the robot may fall down at the ground during walking. To attack one of those problems, joint controller is proposed. It can perform tracking control preciously and reduce the effect of nonlinearities by gear, limitation of the input voltage, coulomb friction and so on. This controller is based on fuzzy-sliding mode controller (FSMC) and compensator and control gains are searched by a proposed genetic algorithm. It can reduce the effect by nonlinearities. Also, to improve the tracking performance, the proposed controller has motion controller. From the given controller, a humanoid robot can moved more preciously. Here, all the processes are investigated through simulations and it is verified experimentally in a real joint system for a humanoid robot.

본 논문은 유전알고리즘을 기초로 한 휴머노이드 로봇의 관절 제어에 관한 논문이다. 휴머노이드 로봇은 지면에 고정된 시스템이 아니기 때문에 기본적으로 불안정성을 내포하고 있다. 게다가 각 관절의 비선형성은 로봇의 안정성에 악영향을 미친다. 이에 만약 둘 중 하나라도 안정하지 못하면 로봇은 보행 중에 넘어지게 될 것이므로, 휴머노이드 로봇의 안정성을 확보하기 위해서는 이 두 가지가 모두 고려되어야 할 것이다. 이에 본 논문에서는 보행 안정성을 확보하기 위해 이 두 가지 문제 중에 로봇의 비선형성을 제거하면서 로봇이 주어진 궤적을 잘 추종하여 제어할 수 있는 제어기를 제안하였다. 이 제어기는 퍼지-슬라이딩 모드 제어기를 기본으로 하고 있으면서 모션 제어기가 첨가되어 있다. 그리고 이때 이러한 제어 이득값을 유전알고리즘을 통해 추종함으로써 보다 정밀한 제어가 가능하도록 하여 휴머노이드 로봇이 보다 안정적으로 보행할 수 있도록 하였다. 이 모든 과정은 시뮬레이션과 실험을 통해 검증하였다.

Keywords

References

  1. Y. Sakagami, R. Watanabe, C. Aoyarna, S. Matsunaga, N. Higaki, and K. Fujimura, 'The intelligent ASIMO: System overview and integration,' IEEE/RSJ International Conference, Vol.3, pp.2478-2483, 2002
  2. Fujita, M., Kuroki, Y., Ishida, T., and Doi, T.T., 'Autonomous behavior control architecture of entertainment humanoid robot SDR-4X,' Intelligent Robots and Systems (IROS2003), Vol. 1, pp. 960-967, 2003
  3. Riezenman, M.J. 'Robots stand on own two feet,' Spectrum IEEE, Vol. 39, pp. 24-25, Aug. 2002
  4. Kurazume, R., Hasegawa, T. and Yoneda, K., 'The sway compensation trajectory for a biped robot,' ICRA '03, Vol. 1, pp. 925-931, 2003
  5. Jong-shik Kong, Bo-hee Lee, and Jin-Geol Kim, 'Design of a Switching PID Controller Using Advanced Genetic Algorithm for a Nonlinear System,' LNAI 3801, pp 176-183, 2005
  6. Peng Yang, Xin Kong, Zuo-Jun Liu, He Chen, Qi Zhau, and Jia Liu, 'Hybrid Joint Controller For Humanoid Robot,' Int. Conf. on Machine Learning Cybernetics, pp. 4188-4192, 2005
  7. Damien Kee, Gordon WyETH, and Jonathon Roberts, 'Biologically Inspired Joint Control for a Humanoid Robot,' Int. Conf. on Humanoid Robots, pp. 385-401, 2004
  8. Byung-Jae Jung, Jung-Shik Kong, Bo-hee Lee, Sang-Min Ahn, and Jin-Geol Kim, 'Backlash Compensation for a Humanoid Robot Using Disturbance Observer,' Int. Conf. On IECON, pp. 2042-2047, 2004
  9. Tatshzo Ishida, Yoshibiro Kuroki, Jin'ichi Yamaguchi, Masahiro Fujita and Toshi T. Doi, 'Motion Entertainment by a Small Humanoid Robot Based on OPEN-R,' IEEE/RSJ, pp. 1079-1086, 2001
  10. M. Yagi and V. Lurnelsky, 'Biped Robot Locomotion in Scenes with Unknown Obstacles,' International Conference on Robotics & Automation, pp. 375-380, 1999
  11. Atsushi Konno, Yusuke Tanida, Koyu Abe, and Masaru Uchiyama, 'A Plantar H-slip Force Sensor for Humanoid Robots to Detect the Reaction Forces,' Intelligent Robots and Systems, pp. 1470-1475, 2005
  12. Koichi Nichiwaki, Yoshifumi Murakami, Satoshi Kagami, Yasuo Kuniyoshi, Masayuki Inaba, and Hirochika Inoue, 'A Six-axis Force Sensor with Parallel Support Mechanicm to Measure to Ground Reaction Force of Humanoid Robot,' International conference on Robotics and Automation, pp. 2277-2282, 2002
  13. Akramizadeh, A, Farjami, A.A, and Khaloozadeh, H., 'Nonlinear Hammerstein Model Identification Using Genetic Algorithm,' Int. Conf. ICAIS pp. 351-356, 2002
  14. Mitsukura, Y, Fukumi, M., Akamatsu, N., and Yamamoto, T. 'A System Identification Method Using a Hybrid-type Genetic Algorithm,' SICE Vol. 3, pp.1598-1602, 2002
  15. Tipsuwanporn, V., Piyarat, W., Tarasantisuk, C., Suesut, T., and Charean, A., 'Identification of Motion Control System Using Genetic Algorithms,' Int. Conf. Power Electronics and Drive Systems, Vol. 2, pp. 854-857, 2001
  16. Liu Changliang, Liu jizhen, Niu Yuguang, and Yao Wanye, 'The Application of Genetic Algorithm in Model Identification,' TENCON '02 Vol. 3, pp.1261-1264, 2002
  17. Jung-Shik Kong, Jin-Geol Kim, and Bo-Hee Lee, 'A Study on the Posture Control of a Humanoid Robot,' Journal of Control, Automation and Systems Engineering, Vol. 11, No.1, pp. 77-83, 2005 https://doi.org/10.5302/J.ICROS.2005.11.1.077
  18. Jung-Shik Kong and Jin-Geol Kim, 'Identification of a Motor with Multiple Nonlinearities by Improved Genetic Algorithm,' LNAI, 3683, pp.981-987, 2005