Geochemical Studies of the Trace Element of the Basalt in the Kilauea, Hawaii

킬라우에아 현무암의 미량원소에 대한 지구화학적 연구

  • Park, Byeong-Jun (Department of Geology, Kyungpook National University) ;
  • Jang, Yun-Deuk (Department of Geology, Kyungpook National University) ;
  • Kwon, Suk-Bom (Department of Geology, Kyungpook National University) ;
  • Kim, Jeong-Jin (Department of Earth and Environmental Sciences, Andong National University)
  • Published : 2007.10.28

Abstract

Kilauea volcano's summit area was formed by continuous ind/or sporadic eruption activities for several hundreds years. In this study, we mainly focused on the trace elements characteristics through systematic sample rocks erupted from 1790 to September of 1982. Under the microscope it can be observed some main minerals such as olivine, clinopyroxene. and plagioclase with minor opaque minerals including Cr-spinel and ilmenite. Zr, V, Y, Ti elements show incompatible activities with MgO while Ni, Cr, Co elements show highly compatible properties. Elements like as Ba, Rb, Th, Sr, Nd are highly incompatible to show positive trends with $K_2O$. In the REE diagram LREE is more enriched than HREE suggesting typical Oceanic Island Basalt(OIB) type. It can be suggested that Sr have an effect on the fractionation of plagioclase from the kink in the $K_2O$ variation diagram. Y/Ho ratio diagram shows there was no fluids effect in the historical Kilauea volcano but Zr/Hf ratio diagram shows a significant difference between Kilauea lavas and PuuOo lavas. There are distinctive changes of trace element contents showing in particular abrupt changes of temporal variations between 1924 and 1954. Moreover, PuuOo lavas which had been erupted since 1983 follow these decreasing trends of trace element variation. Therefore, it is strongly suggested that these abrupt changes of trace elements trends result from the huge collapse geological event which formed Halemaumau crater in 1924 causing contamination effects of crustal contents into magma chamber and from the changes of parental magma composition injected into Kilauea volcano's summit magma reservoir.

킬라우에아 화산 정상 분화구는 16세기 이래로 계속적이고도 간헐적인 분출활동을 통하여 형성되어진 화산으로서 1790년부터 1982년 9월까지 분출된 현무암의 체계적인 연도별 시료채취를 바탕으로 미량원소와 희토류원소의 특징을 고찰하였다. 주요 정출광물로는 감람석, 단사휘석, 사장석이 있으며 소량의 불투명광물인 크롬스피넬, 티탄철석이 관찰된다. Zr, V, Y, Ti 등과 같은 미량원소들은 MgO로 나타나는 감람석에 대해서 불호정성을 나타내며 Ni, Cr, Co 는 감람석에 대해서 매우 강한 호정성을 나타낸다. Ba, Rb, Th, Sr, Nd 원소들은 불호정성을 나타내어 $K_2O$와 정(+)의 관계를 뚜렷이 나타낸다. 희토류원소를 콘드라이트에 표준화시킨 REE도표에서 LREE가 HREE보다 더 부화된 패턴을 보이는 전형적인 화산호현무암(OIB)을 지시한다. Si에서 약간의 변곡 현상으로부터 소량의 사장석 분별결정작용에 Sr이 관여한 것을 확인할 수 있었다. Y/Ho, Zr/Hf 비로부터 마그마로 유입되는 외부적인 유체(해수 혹은 지하수)의 영향을 고려해 보았을 때 유체의 영향은 거의 나타나지 않았으며 Zr/Hf에서 푸오오(PuuOo)분출암과 킬라우에아(Kilauea)정상 분화구 분출 현무암과의 뚜렷한 차이를 발견하였다. 분출 시대별 미량원소의 함량변화를 관찰하였으며 특히 1921년에서 1954년 사이 동안에 마그마 성분의 급작스런 변화에 의해 그 이전의 대체로 증가하던 미량원소의 함량이 감소하는 경향으로 바뀌게 되었다. 이러한 경향은 킬라우에아 정상 분화구의 분출이 끝나고 계속된 푸오오 분출 현무암의 미량원소의 거동 또한 감소하는 경향을 따르고 있다. 1924년 할레마우마우 분화구가 함락 붕괴되어 지각성분의 마그마 저장소로의 유입과 마그마 저장소 아래에서 공급되는 모마그마의 성분변화에 의해서 미량원소 함량이 급격하게 변한 것으로 해석된다.

Keywords

References

  1. Bau, M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide effect. Contrib. Mineral. Petrol., v. 123, p. 323-333 https://doi.org/10.1007/s004100050159
  2. Casadevall, T.J. and Dzurisin, D. (1987) Stratigraphy and petrology of the Uwekahuna Bluff Section, Kilauea Caldera. USGS. Prof. Pap., v. 1350, p. 351-375
  3. Chen, C.Y., Frey, F.A., Rhodes, J.M. and Easton, R.M. (1996) Temporal geochemical evolution of Kilauea Volcano: comparison of Hilina and Puna Basalt. Geophysical Monograph, American Geophysical Union., v. 95, p. 161-181
  4. Depaolo, D.J., Bryce, J.G., Dodson, A., Shuster, D.L. and Kennedy, B.M. (2001) Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochemistry, Geophysics, Geosystems, 3, 2000GC000139
  5. Dvorak, J.J. (1992) Mechanism of explosive eruption of Kilauea volcano, Hawaii. Bull. Volcanol., v. 54, p. 638-645 https://doi.org/10.1007/BF00430777
  6. Fiske, R.S. and Kinoshita, W.T. (1969) Inflation of Kilauea Volcano prior to its 1967-1968 eruption. Science, v. 165, p. 341-349 https://doi.org/10.1126/science.165.3891.341
  7. Garcia, M.O. Pietruszka, A.J. and Rhodes, J.M. (2003) A petrologic perspective of Kilauea volcano's summit magma reservoir. J. Petrol., v. 44-12, p. 2313-2339
  8. Garcia, M.O., Pietruszka, A.J., Rhodes, J.M. and Swanson, K. (2000) Magmatic processes during the prolonged Puu Oo eruption of Kilauea Volcano, Hawaii. J. Petrol., v. 41, p. 967-990 https://doi.org/10.1093/petrology/41.7.967
  9. Garcia, M.O., Rhodes, J.M., Trusdell, F.A., and Pietruszka, A.J. (1996) Petrology of lavas from the Puu Oo eruption of Kilauea Volcano: III. The Kupaianaha episode(1986-1992). Bull. Volcanol., v. 58, p. 359-379 https://doi.org/10.1007/s004450050145
  10. Green, T.H. and Pearson, N.J. (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim. Cosmochim. Acta., v. 51, p. 55-62 https://doi.org/10.1016/0016-7037(87)90006-8
  11. Helz, R.T. (1987) Diverse olivine types in lava of the 1959 eruption of Kilauea Volcano and their bearing on eruption dynamics. in Volcanism in Hawaii, USGS. Prof. Pap., v. 1350, p. 691-722
  12. Hofmann, A.W., Frigenson, M.D. and Raczek, I. (1984) Case studies on the origin of basalts: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969-1971. Contrib. Mineral. Petrol., v. 88, p. 24-35 https://doi.org/10.1007/BF00371409
  13. Klein, F.W., Koyanagi, R.Y., Nakata, J.S., and Tanigawa, W.R. (1987) The seismicity of Kilauea's magma system. USGS. Prof. Pop., v. 1350, p. 1019-1185
  14. Kurz, M.D., Kenna, T.C., Kammer, D.P., Rhodes, J.M. and Garcia, M.O. (1995) Isotopic evolution of Mauna Volcano: a view from the submarine southwest rift zone. Geophysical Monograph, American Geophysical Union, v. 92, p. 289-306
  15. Neal, C.A. and Lockwood, J.P. (2003) Geologic map of the summit region of Kilauea Volcano. Hawaii, USGS
  16. Park, B.J. and Jang, Y.D. (2007) Petrology of the Basalt of Kilauea Volcano, Hawaii. J. Petrol. Soc. Kor. 16, 59-72
  17. Pietruszka, A.J. and Garcia, M.O. (1999a) The size and shape of Kilauea Volcano's summit magma storage reservoir: a geochemical probe. Earth Planet. Sci. Lett., v. 167, p. 311-320 https://doi.org/10.1016/S0012-821X(99)00036-9
  18. Pietruszka, A.J. and Garcia, M.O. (1999b) A rapid fluctuation in the mantle source and melting history of Kilauea Volcano inffered from the geochemistry of its historical summit lavas(1790-1982). J. Petrol., v. 40, p. 1321-1342 https://doi.org/10.1093/petrology/40.8.1321
  19. Pietruszka, A.P., Rubin, K.H. and Garcia, M.O. (2001) 226Ra-230Th-238U disequilibria of historical Kilauea lavas(1790-1982) and the dynamics of mantle melting within the Hawaiian plume. Earth Planet. Sci. Lett., v. 186, p. 15-31 https://doi.org/10.1016/S0012-821X(01)00230-8
  20. Pearce, J.A. and Norry, M.J. (1979) Petrogenesis implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., v. 69, p. 33-47 https://doi.org/10.1007/BF00375192
  21. Rhodes, J.M., Wenz, K.P., Neal, C.A., Sparks, J.W. and Lockwood, J.P. (1989) Geochemical evidence for invasion of Kilauea's plumbing system by Mauna Loa magmas. Nature, v. 337, p. 257-260 https://doi.org/10.1038/337257a0
  22. Rhodes, J.M. and Hart, S.R. (1995) Episodic trace element and isotopic variations in historical Mauna Loa lavas: implications for magma and plume dynamics. Geophisic. Res, v. 101, p. 11729-11746
  23. Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, p. 74
  24. Shelley, D. (1992) Igneous and Metamorphic Rocks under the Microscope: Classification, Textures, Microsructures and Mineral Preferred-Orientations, Chapman & Hall, p. 175
  25. Tilling, R.I. and Dvorak, J.J. (1993) Anotomy of a basaltic volcano. Nature, v. 363, p. 125-133 https://doi.org/10.1038/363125a0
  26. Tilling, R.I., Wright, T.L. and Millard, H.T. (1987) Trace element chemistry of Kilauea and Mauna Loa lava in space and time: a reconnaissance. USGS. Prof. Pap., v. 1350, p. 641-689
  27. Wright, T.L. (1971) Chemistry of Kilauea and Mauna Loa in space and time. USGS. Prof. Pap., v. 735, p. 1-40
  28. Wright, T.L. and Fiske, R.S. (1971) Origin of differentiated and hybrid lavas of Kilauea Volcano, Hawaii. J. Petrol., v. 12, p. 1-65 https://doi.org/10.1093/petrology/12.1.1