Application of Laser-Induced Breakdown Spectroscopy (LIBS) for In-situ Detection of Heavy Metals in Soil

토양내 중금속 실시간 탐지를 위한 레이저 유도붕괴 분광법의 활용에 대한 소개

  • Ko, Eun-Joung (Division of Earth Environmental System, College of Natural Science, Busan National University) ;
  • Hamm, Se-Yeong (Division of Earth Environmental System, College of Natural Science, Busan National University) ;
  • Kim, Kyoung-Woong (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 고은정 (부산대학교 지구환경시스템학부) ;
  • 함세영 (부산대학교 지구환경시스템학부) ;
  • 김경웅 (광주과학기술원 환경공학과)
  • Published : 2007.10.28

Abstract

Laser induced breakdown spectroscopy (LIBS) is a recently developed analytical technique that is based upon the measurement of emission lines generated by atomic species close to the surface of the sample, thus allowing their chemical detection, identification and quantification. With powerful advantages of LIBS compared to the conventional analytical methodology, this technique can be applied in the detection of heavy metals in the field. LIBS allows the rapid analysis by avoiding laborious chemical steps. LES have already been applied for the determination of element concentration in a wide range of materials in the solid, liquid and gaseous phase with simplicity of the instrument and diversity of the analytical application. These feasibility of rapid multi elemental analysis are appealing proprieties for the in-situ analytical technique in geochemical investigation, exploration and environmental analysis. There remain still some limitations to be solved for LIBS to be applied in soil environment as an in-situ analytical technology. We would like to provide the basic principle related to the plasma formation and laser-induced breakdown of sample materials. In addition, the matrix effect, laser properties and the various factors affecting on the analytical signal of LIBS was dealt with to enhance understanding of LIBS through literature review. Ultimately, it was investigated the feasibility of LIBS application in soil environment monitoring by considering the basic idea to enhance the data quality of LIBS including the calibration method for the various effects on the analytical signal of LIBS.

LIBS는 시료 표면에서 발생된 플라즈마로부터 방출되는 원자들의 분광선을 측정함으로써 물질의 화학적 조성을 감지, 확인, 정량화할 수 있는 최신의 분석기술로 기존의 전형적인 원소분석방법에 비해 현장분석기술로서의 더 많은 장점을 가지고 있다. LIBS는 최소한의 시료로 복잡한 분석과정을 피함으로 신속한 분석을 가능케 하고, 기기의 다방면적의 적용가능성과 단순함으로 인해 신속하게 가스, 고체, 액체상에서 다원소를 동시에 분석할 수 있는 레이저 기반의 분석기술로 지구화학적 분석, 탐사 혹은 환경분석에서 현장 이동성을 가진 센서로의 가능성 측면에서 매력적인 도구가 된다. 그러나 현장분석기술로서 토양환경에 적용하기에는 여전히 해결해야 할 문제들이 있다. 문헌연구를 통해 기본적인 작용원리인 플라즈마 형성과 물질붕괴과정을 고찰하고 현장분석기술로서 LIBS의 현 위치를 살펴본다. 또한 토양환경에 적용하기 위해 매질의 특성, 레이저 특성 및 분석신호에 영향을 미치는 다양한 인자들을 살펴보아 LIBS에 대한 기본적 이해를 돕고자 한다. 또한 분석에 미치는 영향 인자들을 보정해 분석 결과의 정확도, 정밀도 및 검출 한계 등 분석의 질을 향상 시킬 수 있는 기법 등을 다양한 문헌 연구를 통해 살펴봄으로써 추후 국내 토양환경분야의 LIBS 현장기술의 적용가능성을 고찰해보고자 한다.

Keywords

References

  1. Adrain, R. S. and Watson, J. (1984) Laser Microspectral Analysis: A Review of Principles and Applications. Appl. Phys. D17, p.1915-1940 https://doi.org/10.1088/0022-3727/17/10/004
  2. Arca, G., Ciucci, A., Palleschi, V., Rastelli, S. and Tognoni, E. (1997)Trace element analysis in water by the laser induced breakdown spectroscpy technique. Appl. Spectsoc. v. 51, p. 1102-1105 https://doi.org/10.1366/0003702971941863
  3. Autin, M., Briand, A. and Mauchien, P. (1993) Characterization by emission spectrometry of a laser-produced plasma from a copper target in air at atmospheric pressure Spectrochim. Acta. Part B48, p. 851-862 https://doi.org/10.1016/0584-8547(93)80089-D
  4. Barbini, R., Colao, F., Fantoni, R., Pallucci, A. and Capitelli, F. (1999) Application of laser induced breakdson spectroscopy to the analysis of metals in soil. Appl. Phys. A69, p. 175-178 https://doi.org/10.1007/s003399900385
  5. Barrete, L. and Turmel, S. (2001) On-line iron-ore slurry monitoring for real ime process control pf pellet making processes using laser induced breakdown spectroscopy: graphite vs. total carbon detection. Spectrochim. Acta. Part B56, p.715-723 https://doi.org/10.1016/S0584-8547(01)00227-0
  6. Brech, F. and Cross, L. (1962) Optical micromission simulated by ruby laser. Appl. Spectrosc. v. 16, p.59
  7. Bulatove, V., Kransniker, R. and Schechlter, I. (1998) Study of Matrix Effects in Laser Plasma Spectroscopy by Combined Multifiber Spatial and Temporal Resolutions. Anal. Chem. v. 70, p. 5302-5311 https://doi.org/10.1021/ac9805910
  8. Capitelli, F., Colao, F., Provenzano, M. R., Fantoni, R., Brunetti, G. and Sensi, N. (2002) Determination of heavymetlas in soil by laser induced breakdown spectroscopy. Geoderma, v. 106, p. 46-62
  9. Capitelli, M., Eletskii, A.V. and Capitelli, F. (2000) Non equilibrium and equilibrium problems in laser induced plasmas. Spectrochim. Acta. Part B55, p. 559-574 https://doi.org/10.1016/S0584-8547(00)00168-3
  10. Castel, B.C., Talabardo, K., Smith, B.W. and Winefordner, J.D. (1998a) Variables influencing the precision of laser induced breakdown spectroscopy measurement. Appl. Spectrosc. v. 52, p. 1067-1624
  11. Castle, B.C., Knight, A.K., Visser, K., Smith, B.W. and Winefordner, J.D. (1998b) Battery powered laser-induced plasma spectrometer for elemental determinations. J. Anal. At. Spectrom. v. 13, p. 589-595 https://doi.org/10.1039/a708844b
  12. Chaleard, C., Mauchein, P., Andre, N., Uebbing, J., Lacour, J.L. and Geertsen, C.(1997) Correction of matrix effects in quantitative elemental analsis with laser ablation optical emission spectrometry. J. Anal. At. Spectrom. v. 12, p. 183-188 https://doi.org/10.1039/a604456e
  13. Chan, W.T. and Russo, R.E. (1991) Study of laser material interactions using inductivley coupledpalsam atomic emission spectroscopy. Spectrochim. Acta. Part B46, p.1471-1486 https://doi.org/10.1016/0584-8547(91)80199-D
  14. Ciucci, A., Palleschi, V. and Van de Stee, H.J.L. (1996) Trace pollutant analysis in soil by a time-resolvd laser induced breakdown spectroscopy technique, Appl. Phys, B63, p. 185-190 https://doi.org/10.1007/BF01095271
  15. Ciucci, A., Corsi, M., Palleschi, V., Rastelli, S., Salvetti, A. and Tognoni, E. (1999) New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy. Appl. Spectrosc. v. 53, p. 960-964 https://doi.org/10.1366/0003702991947612
  16. Corsi, M., Palleschi, V., Salvetti, A., Tognoni, E. and Vallebona, C. (2000) Making LIBS quantitative: a critical review of the current approaches to the problem, Res. Adv. Appl. Spectrosc. v. 1, p. 41-46
  17. Corsi, M., Cristoforetti, G., Hidalgo, M., Legnaioli, S., Palleschi, V., Salvetti, A., Tognoni, E. and Vallebona, C. (2006) Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils. Appl. Geochem. v. 21, p. 748-755 https://doi.org/10.1016/j.apgeochem.2006.02.004
  18. Cremers, D.A. and Radziemski, L.J. (1983) Detection of cholorine and fluoreine in ari by laser induced breakdown spectrometry. Anal. Chem. v.55, p. 1252-1256 https://doi.org/10.1021/ac00259a017
  19. Cremers, D.A. and Radziemski, L.J. and Loree, T.R. (1984) Spectrochemical analysis of liquids using the laser spark. Appl. Spectrosc. 38, p. 721-729 https://doi.org/10.1366/0003702844555034
  20. Cremers, D.A. and Radziemski, L.J. (1987) Laser spectroscopy and Its application, Marcel Dekker, New York, p. 351-415
  21. Davis, C.M., Telle, H.H., Mongomery, D.J. and Corbett, R.E. (1995) Quantitative analysis using remote laser induced breakdown spectroscopy, Spectrochim. Acta. Part B 50, p. 1059-1075 https://doi.org/10.1016/0584-8547(95)01314-5
  22. Eppler, A.S., Cremers, D. A., Hickmott, D. D., Ferris, M. J. and Koskelo, A.C. (1996) Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy Appl. Spectrosc. v. 50, p. 1175-1181 https://doi.org/10.1366/0003702963905123
  23. Fisher, B.T., Johnsen, H.A., Buckley, S.G. and Hahn, D.W. (2001) Temporal gating for the optimization of laser induced breakdown spectroscopy detection and analysis of toxic metals. Appl. Spectrosc. v. 55, p. 1312-1319 https://doi.org/10.1366/0003702011953667
  24. Gautier, C., Fichet, P., Menut, D., Lacour, J.-L., L'Hermite, D. and Dubessy, J. (2005) Quantification of the intensity enhancement for the double pulse laser induced breakdown spectroscopy, Spectrochim. Acta. Part B. 60, p. 265-276 https://doi.org/10.1016/j.sab.2005.01.006
  25. Gornushkin, I.B., Baker, S.A., Smith, B.W. and Winefordner, J.D. (1997) Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence. Spectrochim. Acta Part B 52. p. 1653-1662 https://doi.org/10.1016/S0584-8547(97)00057-8
  26. Harmon, R.S., DeLucia, F.C., McManus, C.E., McMillian, N.J., Jenkins, T.F., Walsh, M.E. and Miziolek, A. (2006) Laser induced breakdown spectroscopy-An emerging chemical sensor technology for real-time field-portable, geochemical, mineological, and environmental application. Appl. Geochem. v.21. p.730-747 https://doi.org/10.1016/j.apgeochem.2006.02.003
  27. Hilbk-Kortenbruck, F., Noll, R., Wintjens, P., Falk, H. and Becker, C. (2001) Analysis of heavy metals in soils using laser induced breakdown spectrometry combined with laser induced fluorescence, Spectrochim. Acta. Part B 56, p. 933-945 https://doi.org/10.1016/S0584-8547(01)00213-0
  28. Hohreiter, V. and Hahn, D.W. (2005) Dual pulse laser induced breakdown spectroscopy: time-resolved transmission and spectral measurements. Spectrochim. Acta. Part B. 60, p. 968-974 https://doi.org/10.1016/j.sab.2005.05.031
  29. Hou, X. and Jones, B.T. (2000) Field instrumentation in atomic spectroscopy, Micro Chem J. v. 66, p. 115-145 https://doi.org/10.1016/S0026-265X(00)00058-8
  30. Jensen, L.C., Langford, S.C., Dickinson, J.T., Addleman, R.S. (1995) Mechanic studies of laser induced breakdown spectroscopy of model environmental samples. Spectrochim. Acta. Part B 50, p. 1501-1519 https://doi.org/10.1016/0584-8547(95)01364-4
  31. Kim, D.E., Yoo, K.J., Park, H.K., Oh, K.J., Kim, D.W. (1997) Quantitative analysis of aluminum impurities in zinc alloy by laser induced breakdown spectroscopy. Appl. Spectrosc. v. 51, p. 22-29 https://doi.org/10.1366/0003702971938920
  32. Lee, Y.I., Sawan, S.P., Thiem, T.L., Teng, Y.Y. and Sneddon, J. (1992a) Interaction of a laser beam with metals II. Space resolved studies of laser ablated plasma emission. Appl. Spectrosc. v. 46, p. 436-441 https://doi.org/10.1366/0003702924125339
  33. Lee, Y.I., Thiem, T.L. and Kim, G.-H (1992b) Interaction of a laser beam with metals: III. The effect of a controlled atmosphere in laser-ablated plasma emission. Appl. Spectrosc. v. 46, p. 1597-1604 https://doi.org/10.1366/0003702924926871
  34. Marqurardt, B.J., Goode, S.R. and Angel, S.M. (1996) In Situ Determination of Lead in Paint by Laser-Induced Breakdown Spectroscopy Vsing a Fiber-Optic Probe. Anal. Chem. v.68, p. 977-981 https://doi.org/10.1021/ac950828h
  35. Martin, M.Z., Cheng, M.D. and Maretic, R.C. (1999) Aerosol measurement by laser induced plasma technique: a review. Aerosl Sci. Technol. v. 31, p. 409-421 https://doi.org/10.1080/027868299303968
  36. Martin, M.Z., Wullschleger, S.D., Garten, T.G. and Palumbo, A.V. (2003) Laser-Induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils. App. Opt. v. 42, p. 2072-2077 https://doi.org/10.1364/AO.42.002072
  37. Multari, R.A., Foster, L.E., Cremers. D.A. and Ferris, M.J. (1996) Effect of sampling geometry on elemental emission in laser induced breakdown spectroscopy. Appl. Spectrosc. v. 50, p. 1483-1499 https://doi.org/10.1366/0003702963904593
  38. Neuhauser, R.E., Panne, U., Niessner, R., Petrucci, G.A., Cavalli, P. and Omentetto, N(1997) On line and in situ detection of lead aerosols by plasma spectroscopy and laser excited atomic fluorescence spectroscopy. Anal. Chim. Acta. v. 346, p. 37-48 https://doi.org/10.1016/S0003-2670(97)00244-4
  39. Pakhomov, A.V., Nichols, Wand Borysow, J. (1996) Laser induced breakdown spectroscopy for detection of Pb in concrete. Appl. spectrosc. v. 50, p. 880-884 https://doi.org/10.1366/0003702963905538
  40. Palanco, S., Bacana, J.M. and Laserma, J.J. (2002) Open path laser induced plasma spectrometry for remote analytical measurements on solid surfaces, Spectrochim. Acta Part B 57, p. 591-599 https://doi.org/10.1016/S0584-8547(01)00388-3
  41. Panne, U., Haisch, C., Clara, M. and Niessner, R. (1998) Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser induced plasma spectroscopy. Part I: normalization and plasma diagnostics. Spectrochim. Acta. Part B53, p. 1957-1968 https://doi.org/10.1016/S0584-8547(98)00238-9
  42. Piepmeier, E.H. (1986) Laser ablation for atomic spetrsocpy. In: Piepmeier, E.H. (Ed.) Analytical application of laser, Willy, New York, p. 627-669
  43. Radziemski, L.J., Loree, T.R., Cremers, D.A. and Hoffman, N.M. (1983) Time Resolved Laser-Induced Breakdown Spectrometry of Aerosols. Anal. Chem. v.55, p. 1246-1252 https://doi.org/10.1021/ac00259a016
  44. Radziemski, L.J., and Cremers, D.A. (1989) Laser induced plasma and applications. Marcel Dekker. New York
  45. Radziemski, L.J., (1994) Review of selected analytical applications of laser plasmas and laser ablation. Microchem. J. v. 50, p. 218-234 https://doi.org/10.1006/mchj.1994.1090
  46. Radziemski, L.J., (2002) From laser to LIBS, the path of technology development, Spectrochim. Acta. Part B 57, p. 1109-1113 https://doi.org/10.1016/S0584-8547(02)00052-6
  47. Rossnwaser, S., Asimellis, G., Bromley, B., Hazlett, R., Martin, J., Pearce, T. and Zigler, A. (2001). Development of a method for automated quantitative analysis of ores using LIBS, Spectrochim Acta Part B56, p. 707-714 https://doi.org/10.1016/S0584-8547(01)00191-4
  48. Salle, B., Cremers, D.A., Maurice, S., Wiens, R.C. and Fichet, P. (2005) Evaluation of compact spectrograph for in situ and stand off laser induce breakdown spectroscopy analysis of geological samples on Mars missions. Spectrochim. Acta Part B60, p. 805-815 https://doi.org/10.1016/j.sab.2005.05.007
  49. Scaffidi, J., Pearman, W., Lawrence, M., Chance Carter, J., Colston, B.W. and Angel, S.M. (2004) Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy, Appl. Opt. v.43, p. 5243-5250 https://doi.org/10.1364/AO.43.005243
  50. Schroeder, H., Schechter, I., Wisbrun, R. and Niessner, R. (1994) Eximer lasers: The tools, Fundamentals of their interaction with matter, Fields of application. Kluwer Academic publishers. p. 269-287
  51. Theriault, G.A., Bodensteiner, S. and Liberman, S.H. (1998) A real time fiber optic LIBS probe for the in situ delinaeation of metals in soils. Field Analytical chemistry and technology. p. 2117-125
  52. Todoli, J.-L. and Mermet, J.-M. (1998) Study of polymer ablation products obtained by ultraviolet laser ablation inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta. Part B 53, p. 1645-1656 https://doi.org/10.1016/S0584-8547(98)00219-5
  53. Tognoni, E., Palleschi, V., Corsi, M. and Cristoforetti, G. (2002) Quantitative micro analysis by laser induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta. Part B 57, p. 1115-1130 https://doi.org/10.1016/S0584-8547(02)00053-8
  54. Vidal, F., Laville, S., Johnsotn, T.W., Barthelemy, O., Chaker, M., LeDrogff, B., Margot, J. and Sabsabi, M. (2001) Numercial simulation of ultrashort laser pulse ablation and plasma expansion in ambient air. Spectrochim. Acta. Part B56, p. 973-986 https://doi.org/10.1016/S0584-8547(01)00195-1
  55. Wachter, J. R. and Cremers, D.A. (1987) Determination of Uranium in Solution Vsing Laser-Induced Breakdown Spectroscopy, Appl. Spectrosc., v. 41, p. 1042-1048 https://doi.org/10.1366/0003702874447897
  56. Wainner, R.T., Harmon, R.S., Miziol, A.W., McNesby, K.L. and French, P.D. (2001) Analysis of environmental lead contamination: Comparision of LIBS field and laboratory instruments. Spectrochimca Acta Part B 56, p. 777-793 https://doi.org/10.1016/S0584-8547(01)00229-4
  57. Wiggenhauser, H., Schaurich, D. and Wilsch, G. (1998) LIBS for non-destructive testing of element distributions on surfaces. NDT&E International, v. 31, p. 307-313 https://doi.org/10.1016/S0963-8695(98)00008-5
  58. Winefordner, J.D., Gornushkin, I.B., Pappas, D., Matveev, O.I. and Smith, B.W. (2000) Novel uses of lasers in atomic spectroscopy. v.15, p. 1161-1189 https://doi.org/10.1039/a910219l
  59. Wisbrun, R., Schechlter, I., Niessner, R. and Schroder, H. (1993) Laser-induced breakdown spectroscopy as a fast screening sensor for environmental analysis of trace amounts of heavy metals in soil. Anal. Methods Instrum. v. 1, p. 17-22
  60. Wisbrun, R., Schechlter, I., Niessner, R., Schroder, H. and Kompa, K. L. (1994) Detector for trace elemental analysis of solid environmentla samples by laser plasma spectroscopy. Anal. Chem. v.66, p.2964-1975 https://doi.org/10.1021/ac00090a026
  61. Xu, I., Bulatove, V., Gridin, V.V., and Schechlter, I (1997) Anal. Chem. v. 69, p. 2103-2108 https://doi.org/10.1021/ac970006f
  62. Yalcin, S., Crosley, D.R., Smith, G.P. and Faris, G.W. (1999) Influence of ambient conditions on the laser air spark. Applied. Physics B., v.68, p. 121-130 https://doi.org/10.1007/s003400050596
  63. Yamamoto, K.Y., Cremers, D. A., Ferris, M. J., Foster, and Leeann E. (1996) Detection of Metals in the Environment Using a Portable Laser-Induced Breakdown Spectroscopy Instrument Applied Spectroscopy, v. 50, p. 222-233 https://doi.org/10.1366/0003702963906519