Sampling and Analysis of Soil Pore Water for Predicting the Diffusion and Behavior of Soil Pollutant Using Soil Lysimeter

토양라이시미터를 이용한 토양오염확산.거동 예측을 위한 토양공극수 채취와 분석

  • Ko, Il-Won (Arsenic Geoenvironment Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Se-Yong (Arsenic Geoenvironment Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Kyoung-Woong (Arsenic Geoenvironment Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jin-Soo (Technology Research Center, Mine Reclamation Corporation, Seoktan Hoegwan BLG)
  • 고일원 (광주과학기술원 환경공학과) ;
  • 이세용 (광주과학기술원 환경공학과) ;
  • 김경웅 (광주과학기술원 환경공학과) ;
  • 이진수 (광해방지사업단 기술연구센터)
  • Published : 2007.10.28

Abstract

This case study is about the sampling and interpretation of soil pore water in order to understand and to predict the diffusion and behavior of soil pollution. For the measurement of polycyclic aromatic hydrocarbons(PAHs) in two representative hydrocarbon-contaminated sites, the extraction system of the soil pore water was set up with respect to soil depths and the behavior of contaminants was interpreted. The soil solution extraction system consisted of peristaltic pump, and extraction and sampling compartment, and can measure simultaneously the soil water pressure. The concentration of PAHs with respect to extraction pressure and time decreased due to dilution through soil pore water. Particularly, the concentration of PAHs was more reduced under the unsaturated oxic condition than saturated anoxic condition. Therefore, the soil solution extraction with respect to soil water pressure can interpret the extent of equilibrium between porewater and soil surface.

본 연구는 토양오염의 공간적 확산 및 거동을 이해하기 위한 측정방법을 고찰하고, 토양공극수 채취와 해석에 관한 사례연구이다. 이를 위해서 석유계 탄화수소로 오염된 대표적인 국내 유류오염부지 토양내 PAH류(Polycyclic aromatic hydrocarbons)의 오염 확산과 거동을 정량하기 위한 심도별 토양공극수의 추출장치를 구성하고, 불포화층과 포화층의 토양수를 분석하여 오염물질의 거동을 해석하였다. 토양공극수 추출장치는 공극수 추출용 압력펌프와 토양공극수 추출부로 구성되고, 토양수분장력과 추출압력을 동시에 측정하며 심도별로 토양공극수를 채취하도록 구성하였다. PAH류 오염물질은 추출압력과 시간에 따른 주변 토양공극수의 유입에 의한 희석에 의해서 농도가 낮아졌다. 특히, 추출 심도에 따라 토양의 산화환원전위의 영향에 의해 불포화층의 산화환경에서 포화층의 환원환경보다 자연저감정도가 높았다. 따라서 토양수분장력의 세기에 따라 강한 토양수분장력의 모세관수와 약한 장력의 중력수에 해당하는 토양공극수를 추출함으로써 토양공극수의 평형과 비평형정도를 해석할 수 있다.

Keywords

References

  1. Carr, R.S. and Nipper, M. (2003) Porewater toxicity testing: Biological, chemical and ecological considerations, Society of Environmental Toxicology and Chemistry (SETAC) Press, Pensacola Florida, p.346
  2. Cerniglia, C.E. (1992) Bioremediation of polycyclic aromatic hydrocarbons, Biodegradation, vol. 3, 351-368 https://doi.org/10.1007/BF00129093
  3. Daniel, H. (1998) Environmental soil physics, Academic Press, California, p.771
  4. Eriksson, M., Dalhammar, G. and Borg-Karlson, A.K., (2000) Biological degradation of selected hydrocarbons in an old PAR/creosote contaminated soil from a gas work site. Appl. Microbiol. Biotechnol. vol. 53, 619-626 https://doi.org/10.1007/s002530051667
  5. Essington, M.E. (2003) Soil and Water Chemistry: An Integrative Approach, CRC, p.552
  6. Javier, A.B. and Rafael, M.C. (2000) Soil-water-solute process characterization: An integrated approach, CRC Press, Boca Raton, Florida, p.778
  7. Kalbe, U., Berger, W., Eckardt, J. and Simon, F.G. (2007) Evaluation of leaching and extraction procedures for soil and waste, Waste Management, doi:10.1016/j.wasman.2007.03.008
  8. Kjeldsen, P. and Christensen, T.H. (Eds.) (1996) Kemiske stoffers opfordel I jord og grundvand: Projekt om jord og grundvand fra Miljostyrelsen, No. 20, Copenhagen, Denmark
  9. Mackay, D. and Shiu, W.Y. (1977) Aqueous solubility of polynuclear aromatic hydrocarbons. Journal of Chemical Engineering Data 22, 399.402 https://doi.org/10.1021/je60075a007
  10. Mackay, D., Shiu, W.Y. and Ma, K.C. (1992) Illustrated Handbook of Physico-chemical Properties and Environmental Fate for Organic Chemicals: Part 3. Lewis, Chelsea, MI, USA
  11. McBride, M.B. (1994) Environmental Chemistry of Soils, Oxford University Press, USA, p.416
  12. Nam, K., Chung, N. and Alexander, M., (1998) Relationship between organic matter content of soil and the sequestration of phenanthrene, Environ. Sci. Technol. vol. 32 3785-3788 https://doi.org/10.1021/es980428m
  13. Rivas, F.J. (2006) Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments. J. Hazard. Mater. B138, 234-251
  14. Sabate, J., Vin. A.S., M. and Solanas, A.M., (2004) Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. Int. Biodeterio. Biodeg. vol. 54, 19-25 https://doi.org/10.1016/j.ibiod.2003.12.002
  15. Song, Y.F., Jing, X., Fleischmann, S. and Wilke, B.M., (2002) Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere. vol. 48, 993-1001 https://doi.org/10.1016/S0045-6535(02)00180-7
  16. Sparks, D.L. (2002) Environmental Soil Chemistry, Academic Press, New York, p.350
  17. Tabak, H.H., Lazorchak, J.M., Lei, L., Khodadoust, A.P., Antia, J.E., Bagchi, R. and Suidan, M.T. (2003) Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues. Environ. Toxicol. Chem. vol. 22, 473-482 https://doi.org/10.1897/1551-5028(2003)022<0473:SOBOPA>2.0.CO;2
  18. Wolt, J. (1994) Soil solution chemistry: Application to environmental science and agriculture, Wiley, New York, p.345