Comparison of Antioxidant Potentials in Methanolic Extracts from Soybean and Rice Fermented with Monascus sp.

  • Pyo, Young-Hee (Traditional Food Research Division, Korea Food Research Institute)
  • Published : 2007.06.30

Abstract

The potential antioxidant activities of methanolic extracts from soybean and rice fermented with Monascus sp. were investigated. M. pilosus IFO 480 and M. anka IFO 478 were screened as a suitable strain to promote the antioxidant activities in soybean- and rice- fermentation. The methanol extracts from soybean and rice after fermenting for 20 days at $30^{\circ}C$ resulted in a significant increase in the antioxidant capacities expressed as radical (ABTS and DPPH) scavenging assay and peroxidation inhibition (%) by thiocyanate method and increased (p<0.01) by a 2.6 to 3.1-fold compared with those of the unfermented products. The average antioxidant potentials of Monascus-fermented soybean extracts (MFSE) were significantly (p<0.01) stronger than Monascus-fermented rice extracts (MFRE). A linear correlations between free radical scavenging activity of MFSE and the total phenolics content (r=0.84) and total flavonoids content (r=0.81) were observed. These results indicated that MFSE exhibited stronger (p<0.01) antioxidant activity and contained significantly higher levels (p<0.05) of phenolics than MFRE.

Keywords

References

  1. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139-162 (1994) https://doi.org/10.1152/physrev.1994.74.1.139
  2. Belch JJF, Bridges AB, Scott N, Chopra M. Oxygen free radicals and congestive heart failure. Brit. Heart J. 65: 245-248 (1991) https://doi.org/10.1136/hrt.65.5.245
  3. Juzlova P, Martinkova L, Kren V. Secondary metabolites of the fungus Monascus: a review. J. Ind. Microbiol. 16: 163-170 (1996) https://doi.org/10.1007/BF01569999
  4. Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D, Cooper R, Chang M. Constituents of red yeast rice, a traditional Chinese food and medicine. J. Agr. Food Chem. 48: 5220-5225 (2000) https://doi.org/10.1021/jf000338c
  5. Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biot. 58: 555-564 (2002) https://doi.org/10.1007/s00253-002-0932-9
  6. Endo A, Hasumi K, Negishi S. Monacolins J and L new inhibitors of cholesterol biosynthesis produced by Monascus ruber. J. Antibiot. 38: 420-422 (1985) https://doi.org/10.7164/antibiotics.38.420
  7. Su YC, Wang JJ, Lin TT, Pan TM. Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biot. 30: 41-46 (2003) https://doi.org/10.1007/s10295-002-0001-5
  8. Kuba M, Tana S, Tawata S, Tawata M, Yasuda M. Production of angiotensin I- converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochem. 40: 2191-2196 (2005) https://doi.org/10.1016/j.procbio.2004.08.010
  9. Aniya Y, Ohtani I, Higa T, Miyagi C, Gibo H, Shimabukuro M, Nakanishi H, Taira J. Dimerumic acid as an antioxidant of the mold, Monascus anka. Free Radical Bio. Med. 28: 999-1004 (2000) https://doi.org/10.1016/S0891-5849(00)00188-X
  10. Yang JH, Tseng YH, Lee YL, Mau JL. Antioxidant properties of methanolic extracts from monascal rice. LWT-Food Sci. Technol. 39: 740-747 (2006) https://doi.org/10.1016/j.lwt.2005.06.002
  11. Murakami H, Asakawa T, Terao J, Matsushita S. Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agr. Biol. Chem. Tokyo 48: 2971-2975 (1984) https://doi.org/10.1271/bbb1961.48.2971
  12. Nam HY, Min So, Shin HC, Kim HY, Fukushima M, Han KH, Choi KD, Lee CH. The protective effects of isoflavone extracted from soybean paste in free radical initiator treated rats. Food Sci. Biotechnol. 14: 586-592 (2005)
  13. Jang MY, Cho JY, Cho JI, Moon JH, Park KH. Isolation of compounds with antioxidative activity from quickly fermented soybased foods. Food Sci. Biotechnol. 15: 214-219 (2006)
  14. Pyo YH, Lee TC. The potential antioxidant capacity and angiotensin I-converting enzyme inhibitory activity of Monascus-fermented soybean extracts: Evaluation of Monascus-fermented soybean extracts as multifunctional food additives. J. Food Sci. 72: S708-S713 (2007)
  15. Yen GC, Hsieh CL. Antioxidant activity of extracts from du-zhong (Eucommia ulmoids) toward various peroxidation models in vitro. J. Agr. Food Chem. 46: 3952-3957 (1998) https://doi.org/10.1021/jf9800458
  16. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 26: 25-30 (1995)
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  18. Pyo YH. Optimum condition for production of mevinolin from the soybean fermented with Monascus sp. Korean J. Food Sci. Technol. 38: 256-261 (2006)
  19. Pyo YH, Lee, YC. Mevinolin production by Monascus pilosus KFRI-1140 in solid state fermentation using soymeal. Food Sci. Biotechnol. 15: 647-649 (2006)
  20. Singleton VL, Rossi JA. Colorimetry of total phenolic with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144-158 (1965)
  21. Jia Z, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559 (1999) https://doi.org/10.1016/S0308-8146(98)00102-2
  22. Dziezak JD. Antioxidants. Food Technol.-Chicago 40: 94-102 (1986)
  23. Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclotextrin emulsion. J. Agr. Food Chem. 40: 945-948 (1992) https://doi.org/10.1021/jf00018a005
  24. Pyo YH. Production of a high value-added soybean containing bioactive mevinolins and isoflavones. J. Food Sci. Nutr. 12: 29-34 (2007) https://doi.org/10.3746/jfn.2007.12.1.029
  25. Rice-Evans C, Miller NJ, Paganga O. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  26. Catherine A, Rice-Evans C, Nicholas JM, George P. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159 (1997) https://doi.org/10.1016/S1360-1385(97)01018-2
  27. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: Chemistry, metabolism, and structure-activity relationship. J. Nutr. Biochem. 13: 572-584 (2002) https://doi.org/10.1016/S0955-2863(02)00208-5
  28. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74: 2157-2184 (2004) https://doi.org/10.1016/j.lfs.2003.09.047
  29. Amarowicz R, Troszynska A, Barylko-Pikielna N, Shahidi F. Polyphenolics extracts from legume seed: Correlations between total antioxidant activity, total phenolics content, tannins content, and astringency. J. Food Lipids 278-286 (2004)
  30. Lopez-Amoros ML, Hernandez T, Estrella I. Effects of germination on legume phenolic compounds and their antioxidant activity. J. Food Compos. Anal. 19: 277-283 (2006) https://doi.org/10.1016/j.jfca.2004.06.012
  31. Meng QH, Lewis P, Wahala K, Adlercreutz H, Tikkanen MJ. Incorporation of esterified soybean isoflavones with antioxidant activity into low-density lipoprotein. Biochim. Biophys. Acta 1438: 369-376 (1999) https://doi.org/10.1016/S1388-1981(99)00062-1
  32. Mitchell JH, Gardner PT, Mcphail DB, Morrice PC, Collins AR, Duthie GG. Antioxidant efficacy of phytoestrogens in chemical and biological model system. Arch. Biochem. Biophys. 360: 142-148 (1998) https://doi.org/10.1006/abbi.1998.0951
  33. Pyo YH, Lee TC, Lee YC. Effects of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: S215-S220 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb07160.x