Caking in Food Powders

  • Ruan, Roger (Department of Bioproducts and Biosystems Engineering, University of Minnesota) ;
  • Choi, Young-Jin (Department of Food Science and Biotechnology, Seoul National University) ;
  • Chung, Myong-Soo (Department of Food Science and Technology, Ewha Womans University)
  • Published : 2007.06.30

Abstract

Caking has been a serious problem in food, feed, pharmaceutical, and related industries, where dry powdered materials are produced and/or utilized. Caking of dry food powders occurs when water is redistributed or absorbed by the powders during processing and storage. The powders become sticky when their surfaces are mobilized by water, resulting in inter-particle binding, formation of clusters, and inter-particle fusion, which lead to caking. As a result of caking, the solubility of the powdered materials may decrease, lipid oxidation and enzymatic activity may increase, and sensory qualities such as flavor and crispness may deteriorate. Caking may also lead to microbial growth. For consumers, caking of powder products is a sign of poor quality and possible food safety problems. This paper provides a review of factors affecting caking, caking mechanisms, and analysis of caking based on previous studies.

Keywords

References

  1. Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56: 3843 (1991)
  2. Peleg M. Physical characteristics of food powders. pp. 293-323. In: Physical Properties of Food. Peleg M, Bagley EB (eds). AVI, Westport, CT, USA (1983)
  3. Burak N. Chemicals for improving the flow properties of powders. Chem. Ind. -London 1: 844-850 (1966)
  4. Peleg M, Mannheim CH. The mechanism of caking of powdered onion. J. Food Process Pres. 1: 3-11 (1977) https://doi.org/10.1111/j.1745-4549.1977.tb00309.x
  5. Saltmarch M, Labuza TP. Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders. J. Food Sci. 45: 1231-1236 (1980) https://doi.org/10.1111/j.1365-2621.1980.tb06528.x
  6. Hersey JA. Ordered mixing: a new concept in powder mixing practice. Powder Technol. 11: 41-45 (1975) https://doi.org/10.1016/0032-5910(75)80021-0
  7. Hersey JA, Thiel WJ, Yeung CC. Partially ordered randomized powder mixtures. Powder Technol. 24: 251-256 (1979) https://doi.org/10.1016/0032-5910(79)87043-6
  8. Egermann H, Orr NA. Ordered mixtures-interactive mixtures. Powder Technol. 36: 117-118 (1983) https://doi.org/10.1016/0032-5910(83)80016-3
  9. Peleg M. Glass transitions and the physical stability of food powders. pp. 435-451. In: The Glassy State in Foods. Blanshard JMV, Lillford PJ (eds). Nottingham Univ. Press, Nottingham, UK (1993)
  10. Isengard H-D. Rapid water determination in foodstuffs. Trends Food Sci. Tech. 6: 155-162 (1995) https://doi.org/10.1016/S0924-2244(00)89024-X
  11. Lazar ME, Brown AH, Smith GS, Wong FF, Lindquist FE. Experimental production of tomato powder by spray drying. Food Technol.-Chicago 10: 129-134 (1956)
  12. Tsourouflis S, Flink JM, Karel M. Loss of structure in freeze dried carbohydrate solutions. Effect of temperature, moisture contents, and composition. J. Sci. Food Agr. 27: 509-519 (1976) https://doi.org/10.1002/jsfa.2740270604
  13. Chuy LE, Labuza TP. Caking and stickiness of dairy-based food powders as related to glass transition. J. Food Sci. 59: 43-46 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb06893.x
  14. Roos Y, Karel M. Applying state diagrams to food processing and development. Food Technol.-Chicago 45: 66, 68-71, 107 (1991)
  15. Chinachoti P. Water mobility and it relation to functionality of sucrose-containing food systems. Food Technol.-Chicago 47: 134-140 (1993)
  16. Schenz TW. Glass transitions and product stability - an overview. Food Hydrocolloid 9: 307-315 (1995) https://doi.org/10.1016/S0268-005X(09)80261-0
  17. Roos Y, Karel M, Kokini JL. Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol.-Chicago 50: 95-108 (1996)
  18. Rogers DE, Doescher LC, Hoseney RC. Textural characteristics of reheated bread. Cereal Chem. 67: 188-191 (1990)
  19. Caldwell KB, Goff HD, Maurice TJ. The use of thermal mechanical analysis to determined the influence of carbohydrates on stability of frozen dairy products. J. Dairy Sci. 73: 95 (1990)
  20. Levine H, Slade L. Cryostabilization technology: Thermoanalytical evaluation of food ingredients and systems. pp. 221-305. In: Thermal Analysis of Foods. Harwalker VR, Ma CY (eds). Elsevier Applied Science, London, UK (1990)
  21. George RM. Freezing processes used in the food industry. Trends Food Sci. Tech. 4: 134-138 (1993) https://doi.org/10.1016/0924-2244(93)90032-6
  22. Noel TR, Ring SG, Whittam MA. Glass transition in low-moisture foods. Trends Food Sci. Tech. 1: 62-67 (1990) https://doi.org/10.1016/0924-2244(90)90048-4
  23. Hartel RW, Shastry AY. Sugar crystallization in food products. Crit. Rev. Food Sci. 30: 49-112 (1991) https://doi.org/10.1080/10408399109527541
  24. Jouppila K, Roos YH. Water sorption and time-dependent phenomena of milk powders. J. Dairy Sci. 77: 1798-1808 (1994) https://doi.org/10.3168/jds.S0022-0302(94)77121-6
  25. Jouppila K, Roos YH. Glass transition and crystallization in milk powders. J. Dairy Sci. 77: 2907-2915 (1994) https://doi.org/10.3168/jds.S0022-0302(94)77231-3
  26. Slade L, Levine H. Beyond water activity: Recent advances based on alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. 30: 115-360 (1991) https://doi.org/10.1080/10408399109527543
  27. Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2: 493-500 (1952) https://doi.org/10.1002/jctb.5010020901
  28. Roos Y, Karel M. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Progr. 7: 49-53 (1991) https://doi.org/10.1021/bp00007a008
  29. Couchman PR, Karasz FE. A classical thermodynamic discussion of the effect of composition on glass transition temperatures. Macromolecules 11: 117-119 (1978) https://doi.org/10.1021/ma60061a021
  30. Kokini JL, Cocero AM, Madeka H, De Graaf E. The development of state diagrams for cereal proteins. Trends Food Sci. Tech. 5: 281-288 (1994) https://doi.org/10.1016/0924-2244(94)90136-8
  31. White GW, Cakebread SH. The glassy state in certain sugar-containing food products. Food Technol.-Chicago 1: 73-82 (1966)
  32. To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - I. Evaluation of analytical methods. Food Technol.-Chicago 13: 551-565 (1978)
  33. To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - II. Effect of solute composition. Food Technol.-Chicago 13: 567-581 (1978)
  34. To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - III. Prerequisite of recrystallization. Food Technol.-Chicago 13: 583-594 (1978)
  35. Flink JM. Structure and structure transitions in dried carbohydrate materials. pp. 473-521. In: Physical Properties of Foods. Peleg M, Bagley EB (eds). AVI, Westport, CT, USA (1983)
  36. Brennan JG, Herrera J, Jowitt G. A study of some of the factors affecting the spray drying of concentrated orange juice, on a laboratory scale. Food Technol.-Chicago 6: 295-307 (1971)
  37. Wallack DA, King CJ. Sticking and agglomeration of hygroscopic, amorphous carbohydrate and food powders. Biotechnol. Progr. 4: 31-35 (1988) https://doi.org/10.1002/btpr.5420040106
  38. Hoseney RC, Zeleznak K, Lai CS. Wheat gluten: a glassy polymer. Cereal Chem. 63: 285-286 (1986)
  39. Zelenznak KJ, Hoseney RC. The glass transition in starch. Cereal Chem. 64: 121-124 (1987)
  40. Kopelman IJ, Meydav S, Weinberg S. Storage studies of freeze dried lemon crystals. Food Technol.-Chicago 12: 403-410 (1977)
  41. Dziedzic SZ, Kearsley MW. pp. 137-168. In: Glucose Syrup: Science and Technology. Dziedzic SZ, Kearsley MW (eds). Elsevier, New York, NY, USA (1984)
  42. Aguilera JM, Levi G, Karel M. Effect of water content on the glass transition and caking offish protein hydrolyzates. Biotechnol. Progr. 9: 651-654 (1993) https://doi.org/10.1021/bp00024a013
  43. Hamano M, Sugimoto H. Water sorption, reduction of caking and improvement of free flowingness of powdered soy sauce and miso. 1. Food Process Pres. 2: 185-196 (1978) https://doi.org/10.1111/j.1745-4549.1978.tb00557.x
  44. Anjum FM, Walker CE. Review on the significance of starch and protein to wheat kernel hardness. J. Sci. Food Agr. 56: 1-13 (1991) https://doi.org/10.1002/jsfa.2740560102
  45. Liu WR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol. Bioeng. 37: l77-184 (1991)
  46. Aguilera JM, del Valle JM, Karel M. Caking phenomena in amorphous food powders. Trends Food Sci. Tech. 6: 149-155 (1995) https://doi.org/10.1016/S0924-2244(00)89023-8
  47. Peleg M. On the use of the WLF model in polymers and foods. Crit. Rev. Food Sci. 32: 59-66 (1992) https://doi.org/10.1080/10408399209527580
  48. Soesanto T, Williams MC. Volumetric interpretation of viscosity for concentrated and dilute sugar solutions. J. Phys. Chem.-US 85: 3338-3341 (1981) https://doi.org/10.1021/j150622a026
  49. Buera M del P, Karel M. Application of the WLF equation to describe the combined effects of moisture and temperature on nonenzymatic browning rates in food systems. J. Food Process Pres. 17: 31-45 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00224.x
  50. Levi G, Karel M. Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res. Int. 28: 145-151 (1995) https://doi.org/10.1016/0963-9969(95)90798-F
  51. Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Phys. Chem.-US 77: 3701-3707 (1955)
  52. Roos Y. Characterization of food polymers using state diagram. J. Food Eng. 24: 339-360 (1994) https://doi.org/10.1016/0260-8774(95)90050-L
  53. Peleg M, Hollenbach AM. Flow conditioners and anticaking agents. Food Technol.-Chicago 38: 93-102 (1984)
  54. Peleg M, Mannheim CH, Passy N. Flow properties of some food powders. J. Food Sci. 38: 959-964 (1973) https://doi.org/10.1111/j.1365-2621.1973.tb02124.x
  55. Barbosa-Canovas G, Malave-Lopez J, Peleg M. Density and R. Ruan et al. compressibility of selected food powders mixtures. J. Food Process Eng. 10: 1-19 (1987) https://doi.org/10.1111/j.1745-4530.1987.tb00001.x
  56. Kim M. Effect of soluble starch pretreatment and storage condition on caking degree and moisture sorption of powdered onion. J. Korean Soc. Food Sci. 20: 272-275 (1991)
  57. Moreyra R, Peleg M. Effect of equilibrium water activity on the bulk properties of selected food powders. J. Food Sci. 46: 1918-1922 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb04519.x
  58. Lloyd RJ, Chen XD, Hargreaves JB. Glass transition and caking of spray-dried lactose. Int. J. Food Sci. Technol. 31: 305-311 (1966)
  59. Lai H-M, Schmidt SJ. Lactose crystallization in skim milk powder observed by hydrodynamic equilibria, scanning electron microscopy and $^2H$ nuclear magnetic resonance. J. Food Sci. 55: 994-999 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb01582.x
  60. Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J. Agr. Fooel Chem. 34: 6-14 (1986) https://doi.org/10.1021/jf00067a002
  61. Lemeste M, Huang VT, Panama J, Anderson G, Lentz R. Glass transition of bread. Cereal Food World 37: 264-267 (1992)
  62. Cocero AM, Kokini JL. The study of the glass transition of glutenin using small amplitude oscillatory rheological measurements and differential scanning calorimetry. J. Rheol. 35: 257-270 (1991) https://doi.org/10.1122/1.550255
  63. Anglea SA, Karathanos V, Karel M. Low-temperature transition in fresh and osmotically dehydrated plant materials. Biotechnol. Prog. 9: 204-209 (1993) https://doi.org/10.1021/bp00020a014
  64. Williams RJ. Methods for determination of glass transitions in seeds. Ann. Bot. -London 74: 525-530 (1994) https://doi.org/10.1006/anbo.1994.1150
  65. Chung MS, Ruan RR, Chen PL, Wang X. Physical and chemical properties of caramel systems. Lebensm.-Wiss. Technol. 32: 162-166 (1999) https://doi.org/10.1006/fstl.1998.0521
  66. Roosen MJGW, Hemminga MA, Walstra P. Molecular motion in glassy water-malto-oligosaccharide (maltodextrin) mixtures as studied by conventional and saturation-transfer spin-probe e.s.r. spectroscopy. Carbohyd. Res. 215: 229-237 (1991) https://doi.org/10.1016/0008-6215(91)84023-8
  67. Kalichevisky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ. The glass transition of amylopectin measured by DSC, DMTA, and NMR. Carbohyd. Polym. 18: 77-88 (1992) https://doi.org/10.1016/0144-8617(92)90129-E
  68. Long Z. Study of the glass transition using pulsed nuclear magnetic resonance (NMR). MS thesis, Department of Biosystems and Agricultural Engineering, University of Minnesota, St. Paul, MN, USA (1996)
  69. Chung MS, Kim SH, Park KM. Observation of molecular relaxation behavior of powdered carbohydrates using low field nuclear magnetic resonance (NMR). Food Sci. Biotechnol. 11: 665-672 (2002)
  70. Chung MS, Ruan RR. Storage temperature dependence on caking of food powders. Food Sci. Biotechnol. 11: 566-569 (2002)
  71. Chung MS, Ruan RR, Chen PL, Chung SH, Ahn TH, Lee KH. Study of caking in powdered foods using nuclear magnetic resonance spectroscopy. J. Food Sci. 65: 134-138 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb15968.x
  72. Chung MS, Ruan RR, Chen P, Kim JH, Ahn TH, Baik CK. Predicting caking behavior in powdered foods using low field nuclear magnetic resonance (NMR) technique. Lebensm.-Wiss. Technol. 36: 751-761 (2003) https://doi.org/10.1016/S0023-6438(03)00096-3
  73. Chung MS, Ruan RR, Chen PL, Lee YG, Ahn TH, Baik CK. Formulation of caking-resistant powdered soups based on NMR analysis. J. Food Sci. 66: 1147-1151 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb16096.x