References
- Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56: 3843 (1991)
- Peleg M. Physical characteristics of food powders. pp. 293-323. In: Physical Properties of Food. Peleg M, Bagley EB (eds). AVI, Westport, CT, USA (1983)
- Burak N. Chemicals for improving the flow properties of powders. Chem. Ind. -London 1: 844-850 (1966)
- Peleg M, Mannheim CH. The mechanism of caking of powdered onion. J. Food Process Pres. 1: 3-11 (1977) https://doi.org/10.1111/j.1745-4549.1977.tb00309.x
- Saltmarch M, Labuza TP. Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet whey powders. J. Food Sci. 45: 1231-1236 (1980) https://doi.org/10.1111/j.1365-2621.1980.tb06528.x
- Hersey JA. Ordered mixing: a new concept in powder mixing practice. Powder Technol. 11: 41-45 (1975) https://doi.org/10.1016/0032-5910(75)80021-0
- Hersey JA, Thiel WJ, Yeung CC. Partially ordered randomized powder mixtures. Powder Technol. 24: 251-256 (1979) https://doi.org/10.1016/0032-5910(79)87043-6
- Egermann H, Orr NA. Ordered mixtures-interactive mixtures. Powder Technol. 36: 117-118 (1983) https://doi.org/10.1016/0032-5910(83)80016-3
- Peleg M. Glass transitions and the physical stability of food powders. pp. 435-451. In: The Glassy State in Foods. Blanshard JMV, Lillford PJ (eds). Nottingham Univ. Press, Nottingham, UK (1993)
- Isengard H-D. Rapid water determination in foodstuffs. Trends Food Sci. Tech. 6: 155-162 (1995) https://doi.org/10.1016/S0924-2244(00)89024-X
- Lazar ME, Brown AH, Smith GS, Wong FF, Lindquist FE. Experimental production of tomato powder by spray drying. Food Technol.-Chicago 10: 129-134 (1956)
- Tsourouflis S, Flink JM, Karel M. Loss of structure in freeze dried carbohydrate solutions. Effect of temperature, moisture contents, and composition. J. Sci. Food Agr. 27: 509-519 (1976) https://doi.org/10.1002/jsfa.2740270604
- Chuy LE, Labuza TP. Caking and stickiness of dairy-based food powders as related to glass transition. J. Food Sci. 59: 43-46 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb06893.x
- Roos Y, Karel M. Applying state diagrams to food processing and development. Food Technol.-Chicago 45: 66, 68-71, 107 (1991)
- Chinachoti P. Water mobility and it relation to functionality of sucrose-containing food systems. Food Technol.-Chicago 47: 134-140 (1993)
- Schenz TW. Glass transitions and product stability - an overview. Food Hydrocolloid 9: 307-315 (1995) https://doi.org/10.1016/S0268-005X(09)80261-0
- Roos Y, Karel M, Kokini JL. Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol.-Chicago 50: 95-108 (1996)
- Rogers DE, Doescher LC, Hoseney RC. Textural characteristics of reheated bread. Cereal Chem. 67: 188-191 (1990)
- Caldwell KB, Goff HD, Maurice TJ. The use of thermal mechanical analysis to determined the influence of carbohydrates on stability of frozen dairy products. J. Dairy Sci. 73: 95 (1990)
- Levine H, Slade L. Cryostabilization technology: Thermoanalytical evaluation of food ingredients and systems. pp. 221-305. In: Thermal Analysis of Foods. Harwalker VR, Ma CY (eds). Elsevier Applied Science, London, UK (1990)
- George RM. Freezing processes used in the food industry. Trends Food Sci. Tech. 4: 134-138 (1993) https://doi.org/10.1016/0924-2244(93)90032-6
- Noel TR, Ring SG, Whittam MA. Glass transition in low-moisture foods. Trends Food Sci. Tech. 1: 62-67 (1990) https://doi.org/10.1016/0924-2244(90)90048-4
- Hartel RW, Shastry AY. Sugar crystallization in food products. Crit. Rev. Food Sci. 30: 49-112 (1991) https://doi.org/10.1080/10408399109527541
- Jouppila K, Roos YH. Water sorption and time-dependent phenomena of milk powders. J. Dairy Sci. 77: 1798-1808 (1994) https://doi.org/10.3168/jds.S0022-0302(94)77121-6
- Jouppila K, Roos YH. Glass transition and crystallization in milk powders. J. Dairy Sci. 77: 2907-2915 (1994) https://doi.org/10.3168/jds.S0022-0302(94)77231-3
- Slade L, Levine H. Beyond water activity: Recent advances based on alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. 30: 115-360 (1991) https://doi.org/10.1080/10408399109527543
- Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 2: 493-500 (1952) https://doi.org/10.1002/jctb.5010020901
- Roos Y, Karel M. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol. Progr. 7: 49-53 (1991) https://doi.org/10.1021/bp00007a008
- Couchman PR, Karasz FE. A classical thermodynamic discussion of the effect of composition on glass transition temperatures. Macromolecules 11: 117-119 (1978) https://doi.org/10.1021/ma60061a021
- Kokini JL, Cocero AM, Madeka H, De Graaf E. The development of state diagrams for cereal proteins. Trends Food Sci. Tech. 5: 281-288 (1994) https://doi.org/10.1016/0924-2244(94)90136-8
- White GW, Cakebread SH. The glassy state in certain sugar-containing food products. Food Technol.-Chicago 1: 73-82 (1966)
- To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - I. Evaluation of analytical methods. Food Technol.-Chicago 13: 551-565 (1978)
- To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - II. Effect of solute composition. Food Technol.-Chicago 13: 567-581 (1978)
- To EC, Flink JM. 'Collapse', a structural transition in freeze dried carbohydrates. - III. Prerequisite of recrystallization. Food Technol.-Chicago 13: 583-594 (1978)
- Flink JM. Structure and structure transitions in dried carbohydrate materials. pp. 473-521. In: Physical Properties of Foods. Peleg M, Bagley EB (eds). AVI, Westport, CT, USA (1983)
- Brennan JG, Herrera J, Jowitt G. A study of some of the factors affecting the spray drying of concentrated orange juice, on a laboratory scale. Food Technol.-Chicago 6: 295-307 (1971)
- Wallack DA, King CJ. Sticking and agglomeration of hygroscopic, amorphous carbohydrate and food powders. Biotechnol. Progr. 4: 31-35 (1988) https://doi.org/10.1002/btpr.5420040106
- Hoseney RC, Zeleznak K, Lai CS. Wheat gluten: a glassy polymer. Cereal Chem. 63: 285-286 (1986)
- Zelenznak KJ, Hoseney RC. The glass transition in starch. Cereal Chem. 64: 121-124 (1987)
- Kopelman IJ, Meydav S, Weinberg S. Storage studies of freeze dried lemon crystals. Food Technol.-Chicago 12: 403-410 (1977)
- Dziedzic SZ, Kearsley MW. pp. 137-168. In: Glucose Syrup: Science and Technology. Dziedzic SZ, Kearsley MW (eds). Elsevier, New York, NY, USA (1984)
- Aguilera JM, Levi G, Karel M. Effect of water content on the glass transition and caking offish protein hydrolyzates. Biotechnol. Progr. 9: 651-654 (1993) https://doi.org/10.1021/bp00024a013
- Hamano M, Sugimoto H. Water sorption, reduction of caking and improvement of free flowingness of powdered soy sauce and miso. 1. Food Process Pres. 2: 185-196 (1978) https://doi.org/10.1111/j.1745-4549.1978.tb00557.x
- Anjum FM, Walker CE. Review on the significance of starch and protein to wheat kernel hardness. J. Sci. Food Agr. 56: 1-13 (1991) https://doi.org/10.1002/jsfa.2740560102
- Liu WR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol. Bioeng. 37: l77-184 (1991)
- Aguilera JM, del Valle JM, Karel M. Caking phenomena in amorphous food powders. Trends Food Sci. Tech. 6: 149-155 (1995) https://doi.org/10.1016/S0924-2244(00)89023-8
- Peleg M. On the use of the WLF model in polymers and foods. Crit. Rev. Food Sci. 32: 59-66 (1992) https://doi.org/10.1080/10408399209527580
- Soesanto T, Williams MC. Volumetric interpretation of viscosity for concentrated and dilute sugar solutions. J. Phys. Chem.-US 85: 3338-3341 (1981) https://doi.org/10.1021/j150622a026
- Buera M del P, Karel M. Application of the WLF equation to describe the combined effects of moisture and temperature on nonenzymatic browning rates in food systems. J. Food Process Pres. 17: 31-45 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00224.x
- Levi G, Karel M. Volumetric shrinkage (collapse) in freeze-dried carbohydrates above their glass transition temperature. Food Res. Int. 28: 145-151 (1995) https://doi.org/10.1016/0963-9969(95)90798-F
- Williams ML, Landel RF, Ferry JD. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Phys. Chem.-US 77: 3701-3707 (1955)
- Roos Y. Characterization of food polymers using state diagram. J. Food Eng. 24: 339-360 (1994) https://doi.org/10.1016/0260-8774(95)90050-L
- Peleg M, Hollenbach AM. Flow conditioners and anticaking agents. Food Technol.-Chicago 38: 93-102 (1984)
- Peleg M, Mannheim CH, Passy N. Flow properties of some food powders. J. Food Sci. 38: 959-964 (1973) https://doi.org/10.1111/j.1365-2621.1973.tb02124.x
- Barbosa-Canovas G, Malave-Lopez J, Peleg M. Density and R. Ruan et al. compressibility of selected food powders mixtures. J. Food Process Eng. 10: 1-19 (1987) https://doi.org/10.1111/j.1745-4530.1987.tb00001.x
- Kim M. Effect of soluble starch pretreatment and storage condition on caking degree and moisture sorption of powdered onion. J. Korean Soc. Food Sci. 20: 272-275 (1991)
- Moreyra R, Peleg M. Effect of equilibrium water activity on the bulk properties of selected food powders. J. Food Sci. 46: 1918-1922 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb04519.x
- Lloyd RJ, Chen XD, Hargreaves JB. Glass transition and caking of spray-dried lactose. Int. J. Food Sci. Technol. 31: 305-311 (1966)
-
Lai H-M, Schmidt SJ. Lactose crystallization in skim milk powder observed by hydrodynamic equilibria, scanning electron microscopy and
$^2H$ nuclear magnetic resonance. J. Food Sci. 55: 994-999 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb01582.x - Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J. Agr. Fooel Chem. 34: 6-14 (1986) https://doi.org/10.1021/jf00067a002
- Lemeste M, Huang VT, Panama J, Anderson G, Lentz R. Glass transition of bread. Cereal Food World 37: 264-267 (1992)
- Cocero AM, Kokini JL. The study of the glass transition of glutenin using small amplitude oscillatory rheological measurements and differential scanning calorimetry. J. Rheol. 35: 257-270 (1991) https://doi.org/10.1122/1.550255
- Anglea SA, Karathanos V, Karel M. Low-temperature transition in fresh and osmotically dehydrated plant materials. Biotechnol. Prog. 9: 204-209 (1993) https://doi.org/10.1021/bp00020a014
- Williams RJ. Methods for determination of glass transitions in seeds. Ann. Bot. -London 74: 525-530 (1994) https://doi.org/10.1006/anbo.1994.1150
- Chung MS, Ruan RR, Chen PL, Wang X. Physical and chemical properties of caramel systems. Lebensm.-Wiss. Technol. 32: 162-166 (1999) https://doi.org/10.1006/fstl.1998.0521
- Roosen MJGW, Hemminga MA, Walstra P. Molecular motion in glassy water-malto-oligosaccharide (maltodextrin) mixtures as studied by conventional and saturation-transfer spin-probe e.s.r. spectroscopy. Carbohyd. Res. 215: 229-237 (1991) https://doi.org/10.1016/0008-6215(91)84023-8
- Kalichevisky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ. The glass transition of amylopectin measured by DSC, DMTA, and NMR. Carbohyd. Polym. 18: 77-88 (1992) https://doi.org/10.1016/0144-8617(92)90129-E
- Long Z. Study of the glass transition using pulsed nuclear magnetic resonance (NMR). MS thesis, Department of Biosystems and Agricultural Engineering, University of Minnesota, St. Paul, MN, USA (1996)
- Chung MS, Kim SH, Park KM. Observation of molecular relaxation behavior of powdered carbohydrates using low field nuclear magnetic resonance (NMR). Food Sci. Biotechnol. 11: 665-672 (2002)
- Chung MS, Ruan RR. Storage temperature dependence on caking of food powders. Food Sci. Biotechnol. 11: 566-569 (2002)
- Chung MS, Ruan RR, Chen PL, Chung SH, Ahn TH, Lee KH. Study of caking in powdered foods using nuclear magnetic resonance spectroscopy. J. Food Sci. 65: 134-138 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb15968.x
- Chung MS, Ruan RR, Chen P, Kim JH, Ahn TH, Baik CK. Predicting caking behavior in powdered foods using low field nuclear magnetic resonance (NMR) technique. Lebensm.-Wiss. Technol. 36: 751-761 (2003) https://doi.org/10.1016/S0023-6438(03)00096-3
- Chung MS, Ruan RR, Chen PL, Lee YG, Ahn TH, Baik CK. Formulation of caking-resistant powdered soups based on NMR analysis. J. Food Sci. 66: 1147-1151 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb16096.x