Characterization of Mucilage Produced from the Solid-state Fermentation of Soybean Grit by Bacillus firmus

  • Jang, Eun-Kyung (Traditional Microorganism Resources Center, Keimyung University) ;
  • Seo, Ji-Hyun (Department of Food Science and Technology, Keimyung University) ;
  • Park, Seung-Chun (College of Veterinary Medicine, Kyungpook National University) ;
  • Yoo, Byoung-Seung (Department of Food Science and Technology, Dongguk University) ;
  • Lee, Sam-Pin (Traditional Microorganism Resources Center, Keimyung University)
  • Published : 2007.10.31

Abstract

Mucilage containing ${\gamma}-polyglutamic$ acid (PGA) was efficiently generated by the solid-state fermentation (SSF) of soybean grit by Bacillus firmus NA-1. B. firmus NA-1 was shown to be a glutamate-dependent strain for PGA production. The SSF of soybean grit was optimized in order to produce mucilage with a fortification of 5% glutamate, resulting in higher levels of mucilage production (6.14%) and a higher consistency index ($1.1\;Pa\;sec^n$). The sticky mucilage was comprised of 38% PGA, 7% levan, and some biopolymers. With regard to the viscoelastic properties of the mucilage solution, the viscous modulus (G") obtained from soybean grit fortified with 5% glutamate was approximately 64 times higher titan that of the mucilage solution obtained without glutamate. Although the addition of glutamate in the SSF of soybean grit influenced the rate of PGA production, the molecular weight of PGA remained unaltered, and was detected in a range between 1,400-1,440 kDa.

Keywords

References

  1. Ashiuchi M, Misono H. Poly-$\gamma$-glutamic acid. Vol. 2, pp. 619-659. In: Polysaccharides and Polyamides in the Food Industry. Steinbüchel A, Rhee SK (eds). Wiley-VCH, Weinheim, Germany (2005)
  2. Shih IL, Van YT. The production of poly-($\gamma$-glutamic acid) from microorganisms and its various applications. Bioresource Technol. 79: 207-225 (2001) https://doi.org/10.1016/S0960-8524(01)00074-8
  3. Jeon EH. Isolation and characterization of aerobic spore-forming bacteria isolated from cheonggukjang. MS thesis, University of Chungang, Seoul, Korea (1999)
  4. Kunioka M. Biosynthesis of ($\gamma$-glutamic acid) from L-glutamine, citric acid, and ammonium sulfate in Bacillus subtilis IFO 3335. Appl. Microbiol. Biot. 44: 501-506 (1995) https://doi.org/10.1007/BF00169951
  5. Pérez-Camero G, Congregado F, Bou JJ, Mu oz-Guerra S. Biosynthesis and ultrasonic degradation of bacterial poly-$\gamma$-glutamic acid. Biotechnol. Bioeng. 63: 110-115 (1999) https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<110::AID-BIT11>3.0.CO;2-T
  6. Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MA, Soda K, Yagi T, Misono H. Isolation of Bacillus subtilis (cheonggukjang), a poly- $\gamma$-glutamate producer with high genetic competence. Appl. Microbiol. Biot. 57: 764-769 (2001) https://doi.org/10.1007/s00253-001-0848-9
  7. Oh SM, Jang EK, Seo JH, Ryu MJ, Lee SP. Characterization of the $\gamma$-polyglutamic acid produced from the solid-state fermentation of soybean milk cake using Bacillus sp. Food Sci. Biotechnol. 16: 509- 514 (2007)
  8. Birrer GA, Cromwick AM, Gross RA. $\gamma$-Poly (glutamic acid) formation by Bacillus licheniformis 9945a : Physiological and biochemical studies. Int. J. Biol. Macromol. 16: 265-275 (2004) https://doi.org/10.1016/0141-8130(94)90032-9
  9. Kang SE, Rhee JH, Park C, Sung MH, Lee I. Distribution of poly-$\gamma$- glutamate ($\gamma$-PGA) producers in Korean fermented foods, cheonggukjang, doenjang, and kochujang. Food Sci. Biotechnol. 14: 704-708 (2005)
  10. Cromwick AM, Birrer GA, Gross RA. Effects of pH and aeration on $\gamma$-poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol. Bioeng. 50: 222- 227 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960420)50:2<222::AID-BIT10>3.0.CO;2-P
  11. Véronique BM, Olivier O, Pierre C. Sensors and measurements in solid state fermentation: A review. Process Biochem. 38: 881-896 (2003) https://doi.org/10.1016/S0032-9592(02)00093-6
  12. Ashok P, Carlos RS, David M. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 35: 1153-1169 (2000) https://doi.org/10.1016/S0032-9592(00)00152-7
  13. Xu J, Chen S, Yu Z. Optimization of process parameters for poly $\gamma$- glutamate production under solid state fermentation from Bacillus subtilis CCTC202048. Process Biochem. 40: 3075-3081 (2005) https://doi.org/10.1016/j.procbio.2005.03.011
  14. Shih IL, Yu YT. Simultaneous and selective production of levan and poly ($\gamma$-glutamic acid) by Bacillus subtilis. Biotechnol. Lett. 27: 103-106 (2005) https://doi.org/10.1007/s10529-004-6936-z
  15. Choi SH, Park JS, Whang KS, Yoon MH, Choi WY. Production of microbial biopolymer, poly ($\gamma$-glutamic acid) by Bacillus subtilis BS 62. Agric. Chem. Biotech. 47: 60-64 (2004)
  16. Toshio H, Yusaku F, Seinosuke U. Polyglutamate production by Bacillus subtilis (natto). J. Appl. Biochem. 4: 112-120 (1982)
  17. Seo JH, Lee SP. Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1. J. Med. Food 7: 442-449 (2004) https://doi.org/10.1089/jmf.2004.7.442
  18. Oh SM, Kim CH, Lee SP. Characterization of the functional properties of soy milk cake fermented by Bacillus sp. Food Sci. Biotechnol. 15: 704-709 (2006)
  19. Seo JH, Lee SP. Optimization of the production of fibrinolytic enzyme from Bacillus firmus NA-1 in fermented soybeans. J. Food Sci. Nutr. 9: 14-20 (2004) https://doi.org/10.3746/jfn.2004.9.1.014
  20. Genc M, Zorba M, Oza G. Determination of rheological properties of boza by using physical and sensory analysis. J. Food Eng. 52: 95- 98 (2002) https://doi.org/10.1016/S0260-8774(01)00092-9
  21. Yokoi H, Natsuda O, Hirose J, Hayashi S, Takasaki Y. Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90. J. Ferment. Bioeng. 79: 378-380 (1995) https://doi.org/10.1016/0922-338X(95)94000-H
  22. Kang TH, Jung SJ, Kang SA, Jang KH, Jang EK, Kim SH, Kim IH, Kim SH, Rhee SK, Chun UH. Preparation of levan oligosaccharides by acid hydrolysis and its application in growth of lactic acidproducing bacteria. Korean J. Biotechnol. Bioeng. 17: 137-141 (2002)
  23. Hong X, Min j, Hui L, Dingqiang L, Pingkai O. Efficient production of poly ($\gamma$-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem. 40: 519-523 (2005) https://doi.org/10.1016/j.procbio.2003.09.025
  24. Geresh S, Adin I, Yarmolinsky E, Karpasas M. Characterization of the extracellular polysaccharide of Porphyridium sp.: Molecular weight determination and rheological properties. Carbohyd. Polym. 50: 183-189 (2002) https://doi.org/10.1016/S0144-8617(02)00019-X
  25. Pai VB, Kha SA. Gelation and rheology of xanthan/enzymemodified guar blends. Carbohyd. Polym. 49: 207-216 (2002) https://doi.org/10.1016/S0144-8617(01)00328-9
  26. Goto A, Kunioka M. Biosynthesis and hydrolysis of poly ($\gamma$- glutamic acid) from Bacillus subtilis IFO3335. Biosci. Biotech. Bioch. 63: 110-115 (1992)
  27. Kubota H, Matsunobu T. Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M. Production of poly (${\gamma}$-glutamic acid) by Bacillus subtilis F-2-01. Biosci. Biotech. Bioch. 57: 1212-1213 (1993) https://doi.org/10.1271/bbb.57.1212
  28. Ogawa Y, Yamaguchi F, Yuasa K, TaharaY. Efficient production of $\gamma$-polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Biosic. Biotech. Bioch. 61: 1684-1687 (1997) https://doi.org/10.1271/bbb.61.1684
  29. Choi SH, Sung C, Choi WY. Levan producing Bacillus subtilis BS 62 and its phylogeny based on its 16S rDNA sequence. J. Microbiol. Biotechn. 11: 428-434 (2001)
  30. Kunioka M. Biosynthesis and chemical reactions of poly (amino acid)s from microorganisms. Appl. Microbiol. Biot. 47: 467-475 (1997)
  31. Shih IL, Van YT, Chang YN. Application of statistical experimental methods to optimize production of poly (${\gamma}$-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb. Tech. 31: 213-220 (2002) https://doi.org/10.1016/S0141-0229(02)00103-5
  32. Kunioka M, Goto A. Biosynthesis of poly ($\gamma$-glutamic acid) from Lglutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl. Microbiol. Biot. 40: 867-872 (1994) https://doi.org/10.1007/BF00173990
  33. Kunioka M, Furusawa K. Poly ($\gamma$-glutamic acid) hydrogel prepared from microbial poly ($\gamma$-glutamic acid) and alkane diamine with water-soluble carbodiimide. J. Appl. Polym. Sci. 65: 1889-1893 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970906)65:10<1889::AID-APP5>3.0.CO;2-B
  34. Park C, Choi JC, Choi YH, Nakamura H, Shimanouchi K, Horiuchi T, Misono H, Sewaki T, Soda K, Ashiuchi M, Sung MH. Synthesis of super-high-molecular poly-$\gamma$-glutamic acid by Bacillus subtilis subsp. cheonggukjang. J. Mol. Catal. B-Enzym. 35: 128-133 (2002) https://doi.org/10.1016/j.molcatb.2005.06.007