폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造)

Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge

  • 장희동 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀) ;
  • 장한권 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀) ;
  • 조국 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀) ;
  • 길대섭 (한국지질자원연구원 자원활용소재연구부 나노물질연구팀)
  • Jang, Hee-Dong (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources) ;
  • Chang, Han-Kwon (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources) ;
  • Cho, Kuk (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources) ;
  • Kil, Dae-Sup (Nano-Materials Group, Minerals & Materials Processing Division, Korea Institute Geoscience & Mineral Resources)
  • 발행 : 2007.10.27

초록

폐실리콘 슬러지로부터 테트라메틸오쏘실리케이트(TMOS)와 실리카 나노분말을 제조하였다. 먼저, 실리카 나노분말의 전구체인 TMOS를 폐실리콘 슬러지로부터 촉매 화학반응에 의해 합성하였다. TMOS의 합성실험에서 반응온도가 $130^{\circ}C$ 이상에서는 반응시간이 5시간 경과 시 반응온도에 무관하게 100%의 반응율을 나타내었다. 그러나 $150^{\circ}C$ 이상에서는 초기 반응속도가 빨라졌다. 메탄올 주입속도를 0.8 ml/min에서 1.4 ml/min로 증가시에는 3시간 경과 후에는 반응율이 변화하지 않았다. 이와 같이 합성된 TMOS로부터 화염분무열분해법에 의해 실리카 나노분말을 제조하였다. 제조된 실리카 나노분말은 구형이며, 무응집 형태이었다. 평균입자 크기는 전구체의 주입속도 및 농도변화에 따라 9 nm에서 30 nm로 변화하였다.

Tetramethylorthosilicate (TMOS) and silica nanopowder were synthesized from the waste silicon sludge containing 15% weight of silicon powder. TMOS, a precursor of silica nanopowder, was firstly prepared from the waste silicon sludge by catalytic chemical reaction. The maximum recovery of the TMOS was 100% after 5 hrs regardless of reaction temperature above $130^{\circ}C$. But the initial reaction rate became faster while the reaction temperature was higher than $150^{\circ}C$. As the methanol feedrate Increased from 0.8 ml/min to 1.4 ml/min, the yield of reaction was not varied after 3 hrs. Then, silica nanopowder was synthesized from the synthesized TMOS by flame spray pyrolysis. The morphology of as-prepared silica nanopowder was spherical and non-aggregated. The average particle diameters ranged from 9 nm to 30 nm and were in proportional to the precursor feed rate, and precursor concentration.

키워드

참고문헌

  1. Herbert, G., 1994: Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process, J. Eur. Ceram. Soc., 14(3), pp. 205-214 https://doi.org/10.1016/0955-2219(94)90088-4
  2. Preghenella, M., Pegoretti, A. and Migliaresi, C., 2005: Thermo-mechanical characterization of fumed silica-epoxy nanocomposites, Polym., 46(26), pp. 12065-12072 https://doi.org/10.1016/j.polymer.2005.10.098
  3. Jang, H.D., 2001: Experimental study of synthesis of silica nanoparticles by a bench-scale diffusion flame reactor, Powder Technol., 119(2-3), pp. 102-108 https://doi.org/10.1016/S0032-5910(01)00398-9
  4. Jang, H.D., 1999: Synthesis of silica nanoparticles from tetraethylorthosilicate (TEOS) vapor in a bench-scale flame reactor, J. Aerosol Sci., 30(Suppl. 1), pp. s343-s344 https://doi.org/10.1016/S0021-8502(99)80183-9
  5. Madler, L., et al., 2002: Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci., 33(2), pp. 369-389 https://doi.org/10.1016/S0021-8502(01)00159-8
  6. Dabadie, T., et al., 1995: Synthesis of inorganic gels in a lyotropic liquid crystal medium. I. Synthesis of silica gels in lamellar phases obtained from non-ionic surfactants, J. Sol-Gel. Sci. Technol., 4(2), pp 107-116 https://doi.org/10.1007/BF00491677
  7. Berggren, A., Palmqvist, A., Holmberg, K., 2005: Surfactanttemplated mesostructnred materials from inorganic silica, Soft Matter, 1(3), pp. 219-226 https://doi.org/10.1039/b507551n
  8. Kawakami, N., et al., 2000: Preparation of highly porous silica aerogel thin film by supercritical drying, Jpn, J. appl. Phys. Part 2: Letters, 39(3), pp. L182-L184 https://doi.org/10.1143/JJAP.39.L182
  9. Friedlander, S. K., 2000: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynaruics, second ed., Oxford, New York