Removal of Microcystis sp. using Ceramic Powder

분말세라믹에 의한 Microcystis sp. 제거효과

  • Lee, Jae-Won (Environmental Biotechnology Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Min-Soo (Environmental Biotechnology Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Joung, Seung-Hyun (Environmental Biotechnology Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Chi-Yong (Environmental Biotechnology Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Bo-Bae (Environmental Biotechnology Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jang, Kam-Yong (College of Medicine, Konyang University) ;
  • Oh, Hee-Mock (Environmental Biotechnology Center, Korea Research Institute of Bioscience and Biotechnology)
  • 이재원 (한국생명공학연구원 환경생명공학연구센터) ;
  • 김민수 (한국생명공학연구원 환경생명공학연구센터) ;
  • 정승현 (한국생명공학연구원 환경생명공학연구센터) ;
  • 안치용 (한국생명공학연구원 환경생명공학연구센터) ;
  • 김보배 (한국생명공학연구원 환경생명공학연구센터) ;
  • 장감용 (건양대학교 의과대학) ;
  • 오희목 (한국생명공학연구원 환경생명공학연구센터)
  • Published : 2007.06.01

Abstract

The removal of Microcystis aeruginosa and Chlorella zofingiensis by ceramic powder was investigated on the basis of both the particle size (under 0.05, 0.1, 1 mm) and the dosage (0.1, 1, $10\;g\;L^{-1}$) of the ceramic powder. The removal efficiencies of M. aeruginosa and C. zofingiensis were highest with a particle size of 0.05 mm and a dosage of $1\;g\;L^{-1}$ of the ceramic powder in laboratory experiment. $chlorophyll-{\alpha}$ concentrations decreased in both field and enclosure samples with a particle size of 0.05 mm and a dosage of $1\;g\;L^{-1}$ of ceramic powder, resulting in the removal efficiencies of 67 and 69%, respectively. Consequently, it was concluded that the ceramic powder could be used to control algal bloom by removing $chlorophyll-{\alpha}$ in eutrophic waters.

수화현상의 대표적 원인 생물인 남조류의 M. aeruginosa와 대조구로서 녹조류인 C. zofingiensis를 인공 배양하여 분말세라믹 투여에 따른 선택적 조류 제거 가능성에 대해 실험하였다. 0.05 mm의 분말세라믹을 투여에 따른 M. aeruginosa 및 C. zofingiensis의 침전효율은 각각 82와 63%였으며, 입자크기 0.1과 1 mm의 경우에서 는 M. aeruginosa는 각각 69와 34%, C. zofingiensis는 각각 52와 44%의 침전효율을 나타냄으로써, 분말세라믹 처리에 따른 침전효율의 차이를 나타내는 것을 확인하였다. 또한 Microcystis sp.에 의한 수화현상이 빈번한 수역의 현장시료를 대상으로 분말세라믹 처리에 따른 조류 제거효과를 실험한 결과 입자크기 0.05 mm, 투여농도 $1\;g\;L^{-1}$의 조건에서 24시간 후 약 67%의 Microcystis sp. 제거효과를 나타내었다. 분말세라믹의 수화현장에 적용가능성 여부를 확인하기 위하여 소규모 enclosure에서 분말세라믹 처리 농도에 따른 Microcystis sp. 제거효과 실험한 결과 입자크기 0.05 mm,투여농도 $1\;g\;L^{-1}$의 조건에서 24시간 후 약 69%의 Microcystis sp.의 제거효과를 나타내었으며, 이러한 연구결과로 보아 Microcystis sp.에 의해 수화가 발생한 현장에 분말세라믹을 적용하여 독성 남조류를 효율적으로 제거할 수 있을 것으로 기대된다.

Keywords

References

  1. 김재운, 박영한, 복돈목, 박래준. 2001. 원적외선의 인체 작용 메카니즘. 대한물리치료학회지. 13:447-482
  2. 김형진, 김지환, 오희목, 장감용, 임경묵, 심문보. 2002. 세라믹 처리수의 조류생장 억제효과. 한국환경과학회지. 11:979-985
  3. 박명환, 이석준, 윤병대, 오희목. 2001. 규산질다공체와 미생물응집제의 녹조제어 효과. 환경생물. 14:129-135
  4. 이상훈. 2003. 졸, 겔법에 의한 세라믹 나노분체의 합성 및 응용. 공업화학전망지. 6:27-37
  5. 전대영, 임병란, 유현선, 조진우, 황종혁, 안규홍. 2005. 부착성장 조류제어를 위한 배수로의 재질 개선에 관한 연구. 상하수도학회지. 19: 193-199
  6. 지철근. 2001. 원적외선의 특징. 조명전기설비학회지. 19:4-13
  7. Ahn CY, MH Park, SH Joung, HS Kim, KY Jang and HM Oh. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environ. Sci. Technol. 37:3031-3037 https://doi.org/10.1021/es034048z
  8. Bernhardt H and J Clasen. 1991. Flocculation of microorganisms. J. Water Suppl.: Res. Technol.-AQUA. 40:76-87
  9. Carmichael WW. 1992. Cyanobacteria secondary metabolitesthe cyanotoxins. J. Appl. Bacteriol. 72:445-459 https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  10. Cooke GD, EB Welch, SA Peterson and PR Newroth. 1993. Restoration and management of lakes and reservoirs. 2nd ed. Lewis Publishers, Chelsea, MI. 548
  11. Han MY and WT Kim. 2001. A theoretical consideration of algae removal with clays. Microchem. J. 68:157-161 https://doi.org/10.1016/S0026-265X(00)00142-9
  12. Jochimsen EM, WW Carmichael, JS An, ST Cookson, CEM Holes, MBD Antnes, DA Demelo and WR Javis. 1998. Liver failure and death exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338:873-878 https://doi.org/10.1056/NEJM199803263381304
  13. Karan V, S Victorovic, V Tutundzic and V Polesik. 1998. Functional enzymes activity and gill histology of the carp after copper sulfate exposure and recovery. Ecotoxicol. Environ. Saf. 40:49-55 https://doi.org/10.1006/eesa.1998.1641
  14. Klapper H. 1991. Control of eutrophication in inland waters. Ellis Horwood New York. pp. 337
  15. Lam AKY, EE Prepas, D Spink and SE Hrudey. 1995. Chemical control of hepatotoxic phytoplankton blooms: implications for human health. Water Res. 29: 1845-1854 https://doi.org/10.1016/0043-1354(94)00348-B
  16. Lloyd SW and CC Grimm. 1999. Analysis of 2-MIB and geosmin in catfish by microwave distillation-solid-phase microextraction. J. Agri. Food Chem. 47:164-169 https://doi.org/10.1021/jf980419x
  17. Menzel DW and N Corwin. 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fraction of persulfate oxidation. Limnol. Oceanogr. 10:280-282 https://doi.org/10.4319/lo.1965.10.2.0280
  18. Negro AI, CD Hoyos and JC Vega. 2000. Phytoplankton structure and dynamics in Lake Sanabria and Valparaiso reservoir(NW spain). Hydrobiologia. 424:25-37 https://doi.org/10.1023/A:1003940625437
  19. Petrusevski B, AN Van Breemen and G Alaerts. 1996. Effect of permanganate pre-treatment and coagulation with dual coagulant on algae removal in direct filtration. J. Water Suppl.: Res. Technol.-AQUA. 45:316-326
  20. Pieterse AJH and A Cloot. 1997. Algal cells and coagulation, flocculation and sedimentation process. Water Sci. Technol. 36: 111-118
  21. Plummer JD and JK Edzwald. 2002. Effect of chlorine and ozone on algal cell properties and removal of algae by coagulation. J. Water Suppl.: Res. Technol.-AQUA. 51: 307-318 https://doi.org/10.2166/aqua.2002.0027
  22. Saxby MJ. 1993. A survey of chemicals causing taints and off flavors in foods. pp. 35-62. In Food taints and off-flavors, Blackie Academic & Professional. London
  23. Steynberg MC, MM Gugleilm, JC Geldenhuys and AJH Pieterse. 1996. Chlorine and chloride dioxide: pre-oxidants used as algicide in portable water plant. J. Water Suppl.: Res. Technol.-AQUA. 45: 162-170
  24. Sukenik A, B Teltch, A W Wachs, G Shelef, I Nir and D Levanon. 1987. Effects of oxidants on microalgal flocculation. Water Res. 21:533-539 https://doi.org/10.1016/0043-1354(87)90061-3
  25. Wood LW. 1985. Chloroform-methanol extraction of chlorophyll-$\alpha$. Can. J. Fish. Aquat. Sci. 42:38-43 https://doi.org/10.1139/f85-005
  26. World Health Organization. 1998. Guidelines for drinking-water quality, 2nd Ed. Addendum to volume 2. World Health Organization, Genova