$[^{18}F]FDG$ 소동물 PET과 CT를 이용한 폐 전이 종양 마우스 모델의 영상화

Imaging of Lung Metastasis Tumor Mouse Model using $[^{18}F]FDG$ Small Animal PET and CT

  • 김준엽 (원자력의학원 핵의학연구실) ;
  • 우상근 (원자력의학원 핵의학연구실) ;
  • 이태섭 (원자력의학원 핵의학연구실) ;
  • 김경민 (원자력의학원 핵의학연구실) ;
  • 강주현 (원자력의학원 핵의학연구실) ;
  • 우광선 (원자력의학원 핵의학연구실) ;
  • 정위섭 (원자력의학원 핵의학연구실) ;
  • 정재호 (원자력의학원 핵의학연구실) ;
  • 천기정 (원자력의학원 핵의학연구실) ;
  • 최창운 (원자력의학원 핵의학연구실) ;
  • 임상무 (원자력의학원 핵의학연구실)
  • Kim, June-Youp (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Woo, Sang-Keun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Lee, Tae-Sup (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kim, Kyeong-Min (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kang, Joo-Hyun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Woo, Kwang-Sun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Chung, Wee-Sup (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Jung, Jae-Ho (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Cheon, Gi-Jeong (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Choi, Chang-Woon (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Lim, Sang-Moo (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS))
  • 발행 : 2007.02.28

초록

목적: 이 연구에서는 폐 전이 종양을 영상화하기 위하여 흑색종의 폐 전이 종양 마우스 모델을 제작하고 영상 획득 전처리 조건을 개선하여 폐 전이 종양의 $[^{18}F]FDG$ 소동물 PET 영상을 획득하고자 하였으며, 임상 CT를 이용하여 전이 종양의 해부학적 위치를 확인하고자 하였다. 대상 및 방법: 정상 마우스의 $[^{18}F]$FDG 영상 획득 전 조건은 $16{\sim}22$시간 금식 하고 $30^{\circ}C$의 온도를 유지하며 $[^{18}F]FDG$ (7.4 MBq) 정맥 주사 후 서로 다른 마취제(Ketamine/Xylazine, Ke/Xy과 Isoflurane, Iso)로 $[^{18}F]FDG$ 섭취 60분 동안 유지한 후 20분간 $[^{18}F]FDG$ 소동물 PET 영상을 획득하였다. 혈중 포도당 농도를 보정한 포도당 표준 섭취 계수 영상을 이용하여 관심영역 대 배경비(lung to background ratio, L/B)를 구하여 평가하였다. C57BL/6 마우스에 B16-F10 세포를 정맥내 주사하여 제작한 폐전이 종양 마우스 모델은 정상 마우스의 영상 획득 조건과 동일한 조건에서 $[^{18}F]FDG$ 소동물 PET 영상을 획득하였으며, 임상 CT를 이용하여 획득된 해부학적 영상으로 폐 부위의 종양 위치를 확인하였다. 결과: 정상 마우스의 평균 혈중 포도당 농도는 Ke/Xy으로 마취한 군에서 $128.0{\pm}23.87\;mg/dL$이었으며 Iso으로 마취한 군에서는 $86.0{\pm}21.65\;mg/dL$로, Ke/Xy으로 마취한 군이 Iso로 마취한 군 보다 1.5 배 높은 혈중 포도당 농도를 나타내었다. 포도당 표준 섭취 계수 영상에서의 L/B는 Ke/Xy으로 마취한 군에서 $8.6{\pm}0.48$ 이었으며 Iso으로 마취한 군에서는 $12.1{\pm}0.63$로, Iso로 마취한 군이 Ke/Xy으로 마취한 군 보다 주변 정상조직과의 대조도가 높은 경향을 보였다. 폐 전이 종양 마우스에서는 Iso로 마취한 군이 Ke/Xy으로 마취한 군의 $[^{18}F]FDG$ 소동물 PET 영상보다 주변 조직의 $[^{18}F]FDG$ 섭취가 낮았다. 또한 해부학적 종양의 위치를 확인하기 위하여 임상 CT 영상과 융합한 결과 폐 전이 종양이 폐 부위에 위치함을 확인하였다. 결론: 마우스와 같은 소동물에서의 폐 부위 종양을 $[^{18}F]FDG$로 영상화하는데 있어서 금식, 온도유지, $[^{18}F]FDG$ 섭취 시간 동안의 마취제 조건 등을 고려하여야 하며, $[^{18}F]FDG$ 소동물 PET과 CT 영상의 융합은 폐 부위의 전이 종양을 확인하는데 유용할 것으로 기대된다.

Purpose: The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using $[^{18}F]FDG$ small animal PET and clinical CT. Materials and Methods: The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at $30^{\circ}C$. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq $[^{18}F]FDG$ and compared pattern of $[^{18}F]FDG$ uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, $[^{18}F]FDG$ image was obtained and fused with anatomical clinical CT image. Results: Average blood glucose concentration in normal mice were $128.0{\pm}23.87$ and $86.0{\pm}21.65\;mg/dL$ in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was $8.6{\pm}0.48$ and $12.1{\pm}0.63$ in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, $[^{18}F]FDG$ image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in $[^{18}F]FDG$ small animal PET image was confirmed by fusion image using clinical CT. Conclusion: Tumor imaging in small animal lung region with $[^{18}F]FDG$ small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during $[^{18}F]FDG$ uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

키워드

참고문헌

  1. Devita VT, Hellman S, Rosenberg SA. Cancer principles and practice of oncology. 5th ed. New York: Lippincott-Raven; 1997. p. 674-9
  2. Waber S, Bauer A. Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 2004;31:1545-55 https://doi.org/10.1007/s00259-004-1683-x
  3. Knoess C, Siegel S, Smith A, Newport D, Richerzhagen N, Winkeler A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30: 737-47 https://doi.org/10.1007/s00259-002-1052-6
  4. Weber G. Enzymology of cancer cells (first of two parts). N Engl J Med 1997;296::486-92 https://doi.org/10.1056/NEJM197703032960905
  5. Som P, Atkins HL., Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose(F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670-5
  6. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991:32:623-48
  7. Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossman HB, Fisher S. $^{18}F$-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Cancer 1991;67:1554-50
  8. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics. CA Cancer J Clin 2005;55:10-30 https://doi.org/10.3322/canjclin.55.1.10
  9. Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, et al. Temporal progression of metastasis in lung: Cell survival, dormancy, and location dependence of metastatic ineffiency Cancer Res 2000;60:2541-6
  10. Vantyghem SA, Postenka CO, Chambers AF. Estrous cycle influences organ-specific metastasis of B16F10 melanoma cells. Cancer Res 2003;63:4763-5
  11. Yang M, Jiang P, An Z, Baranov E, Li L, Hasegawa S, et al. Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 1999;5:3549-59
  12. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 2000;97:1206-11 https://doi.org/10.1073/pnas.97.3.1206
  13. Moore A, Sergeyev N, Bredow S, Weissleder R. A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis 1998;18:192-7 https://doi.org/10.1159/000024512
  14. Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R. Detection of lymph node metastases by contrast enhanced MRI in experimental model. Magn Reson Med 2002;47:292-7 https://doi.org/10.1002/mrm.10068
  15. Winkelmann CT, Figueroa SD, Rold TL, Volkert WA, Hoffman TJ. Microimaging characterization of a B16-F10 melanoma metastasis mouse model. Mol Imaging 2006;5:105-14
  16. Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 2006;47:999-1006
  17. Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784-8
  18. Brooks RA, Di Chiro G. Theory of image reconstruction in computed tomography. Radiology 1975;117:561-72 https://doi.org/10.1148/117.3.561
  19. Arguello F, Baggs RB, Frantz CN. A murine model of expermental metastasis to bone and bone marrow. Cancer Res 1998;48:6876-81
  20. Fidler IJ. Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines. Science 1980;208: 1469-71 https://doi.org/10.1126/science.7384789
  21. Torizuka T, Clavo AC, Wahl RL. Effect of hyperglycemia on in vitro tumor uptake of tritiated FDG, thymidine, L-methionine and L-leucine. J Nucl Med 1997;38:382-6
  22. Langen KJ, Braun U, Rota Kops E. Herzog H, Kuwert T, Nebeling B, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 1993;34:355-9
  23. Wahl RL, Henry CA, Ethier SP. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology 1992; 183:643-7 https://doi.org/10.1148/radiology.183.3.1584912
  24. Gordon C. Temperature Regulation in Laboratory Rodents. New York: NY; 1993
  25. Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 2005;46:1531-6
  26. Toyama H, Ichise M, Liow JS, Mines DC, Seneca NM, Modell KJ et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31(2):251-6 https://doi.org/10.1016/S0969-8051(03)00124-0
  27. Kohro S, Hogan QH, Nakae Y, Yamakage M, Bosnjak ZJ. Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology 2001;95:1435-40 https://doi.org/10.1097/00000542-200112000-00024
  28. Monteil J, Dutour A, Akla B, Chianea T, Le Brun V, Grossin L, et al. In vivo follow-up of rat tumor models with 2-deoxy-2-[F-18]fluoro-D-glucose/dual-head coincidence gamma camera imaging. Mol Imaging Biol 2005;7:220-8 https://doi.org/10.1007/s11307-005-4115-9