FDG Uptake in the Pathologically Proven Papillary Thyroid Cancer

수술전에 시행한 PET에서 갑상선 유두상암의 FDG 섭취양상

  • Kim, Tae-Sung (Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine) ;
  • Yun, Mi-Jin (Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine) ;
  • Cho, Arthur (Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine) ;
  • Lee, Jong-Doo (Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine)
  • 김태성 (연세대학교 의과대학 세브란스병원 핵의학과) ;
  • 윤미진 (연세대학교 의과대학 세브란스병원 핵의학과) ;
  • 조응혁 (연세대학교 의과대학 세브란스병원 핵의학과) ;
  • 이종두 (연세대학교 의과대학 세브란스병원 핵의학과)
  • Published : 2007.02.28

Abstract

Purpose: Metastatic thyroid cancers with I-131 uptake have been known to show no increase of FDG uptake whereas those without I-131 uptake tend to demonstrate increased uptake on PET. In this study, we evaluated the degree of FDG uptake in primary thyroid cancers of papillary histology before surgery. Material & Methods: Forty FDG PET studies were performed on the patients who had papillary cancer proven by fine needle aspiration. The degree of FDG uptake was visually categorized as positive or negative (positive if the tumor showed discernible FDG; negative if the tumor didn't) and the peak standard uptake value (peak SUV) of the papillary thyroid cancer (PTC) were compared with the size of PTC. Results: The mean size of 26 PTC with positive FDG uptake was $1.9{\pm}1.4\;cm(0.5{\sim}5\;cm)$. In 13 PTC with negative FDG uptake, the mean size of those was $0.5{\pm}0.2\;cm\;(0.2{\sim}0.9\;cm)$. All PTC larger than 1cm ($2.5{\pm}1.4\;cm,\;1{\sim}5\;cm$) have positive FDG uptake (peak $SUV=6.4{\pm}5.7,\;1.7{\sim}22.7$). Among the micropapillary thyroid cancer (microPTC; PTC smaller than 1cm), 8 microPTC show positive FDG uptake(peak $SUV=2.9{\pm}1.3,\;1.7{\sim}5.5$), while 13 microPTC show negative finding(peak $SUV=1.3{\pm}0.2,\;1.1{\sim}1.7$). The size of microPTC with positive FDG uptake is significantly larger than that of microPTC with negative FDG uptake ($0.7{\pm}0.1\;cm$ vs $0.4{\pm}0.2\;cm$, p=0.01). Conclusion: All PTCs larger than 1cm show positive FDG uptake in our study. In other words, thyroid lesions larger than 1cm with negative FDG uptake are unlikely to be PTC. So far, only poorly differentiated thyroid cancers are known to show increased FDG uptake. Our results seem to be contradictory to what is known in the literature. Further study is needed to understand better the significance of increased FDG uptake in PTC in relation to expression of NIS and GLUT.

목적: 방사성옥소를 잘 섭취하는 갑상선 전이암들은 낮은 FDG 섭취를 보이나, 방사선옥소를 섭취하지 않는 경우는 FDG PET에서 잘 보인다고 알려져 있다. 본 연구에서는 원발성 갑상선 유두상암의 FDG 섭취 양상이 어떠한지 알아보고자 하였다. 대상 및 방법: 초음파유도하 세침흡입술로 갑상선 유두상암을 진단을 받고 갑상선 전절제술이 예정되었던 환자 40명들이 시행한 FDG PET/CT들을 대상으로 후향적 분석을 시행하였다. FDG 섭취의 정도는 병변이 주변 조직보다 높은 섭취를 보이는 것을 육안적으로 확인할 수 있는 경우 양성으로 하고 그렇지 않은 경우 음성으로 나누었으며, 병변의 최대 표준화섭취계수(peak SUV)를 구하여 그 크기와 비교하였다. 결과: FDG 섭취 양성소견을 보이는 27례의 갑상선 유두상암들의 평균 크기는 $1.9{\pm}1.4\;cm\;(0.5{\sim}5\;cm)$였고, FDG 섭취를 보이지 않는 13례의 경우는 $0.4{\pm}0.2cm\;(0.2{\sim}0.9\;cm)$이었다. 갑상선의 크기가 1 cm 이상인 19례들은 ($2.5{\pm}1.4\;cm,\;1{\sim}5\;cm$) 모두 FDG 섭취 양성소견을 보였다 (19/19, peak $SUV\;=\;6.4{\pm}5.7,\;1.7{\sim}22.7$). 1cm 미만의 21례의 미세갑상선암들 중 8례가 FDG 섭취 양성소견을 보인 반면 (8/21, peak $SUV\;=\;2.9{\pm}1.3,\;1.7{\sim}5.5$), 13례는 음성소견을 보였다(peak $SUV\;=\;1.2{\pm}0.2,\;1.1{\sim}1.7$). 미세갑상선암들 중 FDG 섭취 양성 소견을 보이는 경우의 크기는 $0.7{\pm}0.1\;cm$으로 음성소견을 보이는 경우의 크기 $0.4{\pm}0.2\;cm$와 비교하여 유의하게 컸다(P=0.01). 결론: 본 보고에서 40례의 원발성 갑상선 유두상암 가운데 1 cm 이상 크기의 갑상선 유두상암들은 모두 FDG 섭취 양성소견을 보였는데, 이는 방사성옥소를 섭취하지 않는 분화도가 나쁜 갑상선암들만 FDG 섭취를 보인다는 이전 문헌의 내용과 상충되며, 이러한 원발성 갑상선 유두상암의 FDG 섭취를 이해하기 위해서는 GLUT 및 NIS 발현과 연관한 후속 연구가 필요하겠다.

Keywords

References

  1. Joensuu H, Ahonen A, Klemi PJ. 18F-fluorodeoxyglucose imaging in preoperative diagnosis of thyroid malignancy. Eur J Nucl Med 1988;13:502-6
  2. de Geus-Oei LF, Pieters GF, Bonenkamp JJ, Mudde AH, Bleeker-Rovers CP, Corstens FH, et al. 18F-FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med 2006;47:770-5
  3. Kresnik E, Gallowitsch HJ, Mikosch P, Stettner H, Igerc I, Gomez I, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area. Surgery 2003;133:294-9 https://doi.org/10.1067/msy.2003.71
  4. Kang KW, Kim SK, Kang HS, Lee ES, Sim JS, Lee IG, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab 2003;88:4100-4 https://doi.org/10.1210/jc.2003-030465
  5. Cohen MS, Arslan N, Dehdashti F, Doherty GM, Lairmore TC, Brunt LM, et al. Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 2001;130:941-6 https://doi.org/10.1067/msy.2001.118265
  6. Uematsu H, Sadato N, Ohtsubo T, Tsuchida T, Nakamura S, Sugimoto K, et al. Fluorine-18-fluorodeoxyglucose PET versus thallium-201 scintigraphy evaluation of thyroid tumors. J Nucl Med 1998;39:453-9
  7. Sasaki M, Ichiya Y, Kuwabara Y, Akashi Y, Yoshida T, Fukumura T, et al. An evaluation of FDG-PET in the detection and differentiation of thyroid tumours. Nucl Med Commun 1997;18:957-63 https://doi.org/10.1097/00006231-199710000-00011
  8. Bloom AD, Adler LP, Shuck JM. Determination of malignancy of thyroid nodules with positron emission tomography. Surgery 1993;114:728-34; discussion 734-5
  9. Chung JK, So Y, Lee JS, Choi CW, Lim SM, Lee DS, et al. Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan. J Nucl Med 1999;40:986-92
  10. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997;24:1342-8 https://doi.org/10.1007/s002590050158
  11. Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37:1468-72
  12. Frilling A, Gorges R, Tecklenborg K, Gassmann P, Bockhorn M, Clausen M, et al. Value of preoperative diagnostic modalities in patients with recurrent thyroid carcinoma. Surgery 2000;128: 1067-74 https://doi.org/10.1067/msy.2000.110771
  13. Grunwald F, Kalicke T, Feine U, Lietzenmayer R, Scheidhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26:1547-52 https://doi.org/10.1007/s002590050493
  14. Helal BO, Merlet P, Toubert ME, Franc B, Schvartz C, Gauthier-Koelesnikov H, et al. Clinical impact of (18)F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med 2001;42: 1464-9
  15. Schluter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 2001;42:71-6
  16. Wang W, Macapinlac H, Larson SM, Yeh SD, Akhurst T, Finn RD, et al. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999;84:2291-302 https://doi.org/10.1210/jc.84.7.2291
  17. Warburg O. On the origin of cancer cells. Science 1956;123:309-14 https://doi.org/10.1126/science.123.3191.309
  18. Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 2002;43:173-80
  19. Aloj L, Caraco C, Jagoda E, Eckelman WC, Neumann RD. Glut-1 and hexokinase expression: relationship with 2-fluoro-2-deoxy-Dglucose uptake in A431 and T47D cells in culture. Cancer Res 1999;59:4709-14
  20. Haberkorn U, Ziegler SI, Oberdorfer F, Trojan H, Haag D, Peschke P, et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol 1994;21:827-34 https://doi.org/10.1016/0969-8051(94)90162-7
  21. Matsuzu K, Segade F, Wong M, Clark OH, Perrier ND, Bowden DW. Glucose transporters in the thyroid. Thyroid 2005;15:545-50 https://doi.org/10.1089/thy.2005.15.545
  22. Matsuzu K, Segade F, Matsuzu U, Carter A, Bowden DW, Perrier ND. Differential expression of glucose transporters in normal and pathologic thyroid tissue. Thyroid 2004;14:806-12 https://doi.org/10.1089/thy.2004.14.806
  23. Schonberger J, Ruschoff J, Grimm D, Marienhagen J, Rummele P, Meyringer R, et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002;12:747-54 https://doi.org/10.1089/105072502760339307
  24. Haber RS, Weiser KR, Pritsker A, Reder I, Burstein DE. GLUT1 glucose transporter expression in benign and malignant thyroid nodules. Thyroid 1997;7:363-7 https://doi.org/10.1089/thy.1997.7.363
  25. McDougall IR, Davidson J, Segall GM. Positron emission tomography of the thyroid, with an emphasis on thyroid cancer. Nucl Med Commun 2001;22:485-92 https://doi.org/10.1097/00006231-200105000-00004
  26. Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987;28:910-4
  27. Simpson WJ, McKinney SE, Carruthers JS, Gospodarowicz MK, Sutcliffe SB, Panzarella T. Papillary and follicular thyroid cancer. Prognostic factors in 1,578 patients. Am J Med 1987;83:479-88 https://doi.org/10.1016/0002-9343(87)90758-3