GABA 수용체 영상

GABA Receptor Imaging

  • 이종두 (연세대학교 의과대학 진단방사선과학교실 핵의학과)
  • Lee, Jong-Doo (Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine)
  • 발행 : 2007.04.30

초록

GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, $GABA_{A}-receptor$ that allows chloride to pass through a ligand gated ion channel and $GABA_{B}-receptor$ that uses G-proteins for signaling. The $GABA_{A}$-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate $GABA_{A}$-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with $^{11}C-FMZ$, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, $^{18}F-fluoroflumazenil$ (FFMZ) has been developed to overcome $^{11}C's$ short half-life. $^{18}F-FFMZ$ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using $^{11}C-FMZ$ PET instead of $^{18}F-FDG$ PET, restrict the foci better and may also help find lesions better than high resolution MR. $GABA_{A}$ receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, $GAB_{A}$ imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

키워드

참고문헌

  1. Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 2002;3:715-27 https://doi.org/10.1038/nrn919
  2. Bormann J. Electrophysiology of $GABA_A$ and $GABA_B$ receptor subtypes. Trends Neurosci 1988;11:112-6 https://doi.org/10.1016/0166-2236(88)90156-7
  3. Kaila K. Ionic basis of $GABA_A$ receptor channel function in the nervous system. Prog Neurobiol 1994;42:489-537 https://doi.org/10.1016/0301-0082(94)90049-3
  4. Macdonald RL, Olsen RW. $GABA_A$ receptor channels. Annu Rev Neurosci 1994;17:569-602 https://doi.org/10.1146/annurev.ne.17.030194.003033
  5. Mehta AK, Ticku MK. An update on $GABA_A$ receptors. Brain Res Brain Res Rev 1999;29:196-217 https://doi.org/10.1016/S0165-0173(98)00052-6
  6. Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 2002;3:728-39 https://doi.org/10.1038/nrn920
  7. Gaiarsa JL, Caillard O, Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 2002;25:564-70 https://doi.org/10.1016/S0166-2236(02)02269-5
  8. Chugani DC, Muzik O, Juhasz C, Janisse JJ, Ager J, Chugani HT. Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann Neurol 2001;49:618-26 https://doi.org/10.1002/ana.1003
  9. Olsen RW, McCabe RT, Wamsley JK. GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system. J Chem Neuroanat 1990;3:59-76
  10. Grunder G, Siessmeier T, Lange-Asschenfeldt C, Vernaleken I, Buchholz HG, Stoeter P, et al. [$^{18}F$]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur J Nucl Med 2001;28:1463-70 https://doi.org/10.1007/s002590100594
  11. Leveque P, Sanabria-Bohorquez S, Bol A, De Volder A, Labar D, Van Rijckevorsel K, et al. Quantification of human brain benzodiazepine receptors using [$^{18}F$]fluoroethylflumazenil: a first report in volunteers and epileptic patients. Eur J Nucl Med Mol Imaging 2003;30:1630-6 https://doi.org/10.1007/s00259-003-1304-0
  12. Yoon YH, Jeong JM, Kim HW, Hong SH, Lee YS, Kil HS, et al. Novel one-pot one-step synthesis of 2'-[(18)F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging. Nucl Med Biol 2003:30:521-7 https://doi.org/10.1016/S0969-8051(03)00030-1
  13. Chang YS, Jeong JM, Yoon YH, Kang WJ, Lee SJ, Lee DS, et al. Biological properties of 2'-[18F]fluoroflumazenil for central benzodiazepine receptor imaging. Nucl Med Biol 2005:32:263-8 https://doi.org/10.1016/j.nucmedbio.2004.12.004
  14. Jibiki I, Kubota T, Fujimoto K, Yamaguchi N, Matsuda H, Hisada K. Regional relationships between focal hypofixation images in 123I-IMP single photon emission computed tomography and epileptic EEG foci in interictal periods in patients with partial epilepsy. Eur Neurol 1991;31:360-5 https://doi.org/10.1159/000116694
  15. Newton MR, Berkovic SF, Austin MC, Rowe CC, McKay WJ, Bladin PF. SPECT in the localisation of extratemporal and temporal seizure foci. J Neurol Neurosurg Psychiatry 1995:59:26-30 https://doi.org/10.1136/jnnp.59.1.26
  16. Tatsu Y, Nishigaki H, Adachi I, Matsuoka T, Ashina K, Hiraishi K, et al. [A comparison among 123I-IMP SPECT, EEG and MRI in patients with temporal lobe epilepsy]. Kaku Igaku 1994:31: 1077-84
  17. Kaneko K, Sasaki M, Morioka T, Koga H, Abe K, Sawamoto H, et al. Pre-surgical identification of epileptogenic areas in temporal lobe epilepsy by 123I-iomazenil SPECT: a comparison with IMP SPECT and FDG PET. Nucl Med Commun 2006:27:893-9 https://doi.org/10.1097/01.mnm.0000243380.79872.32
  18. Ratzliff AH, Santhakumar V, Howard A, Soltesz I. Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci 2002:25: 140-4 https://doi.org/10.1016/S0166-2236(00)02122-6
  19. Ratzliff AH, Howard AL, Santhakumar V, Osapay I, Soltesz I. Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J Neurosci 2004:24: 2259-69 https://doi.org/10.1523/JNEUROSCI.5191-03.2004
  20. McDonald JW, Garofalo EA, Hood T, Sackellares JC, Gilman S, McKeever PE, et al. Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy. Ann Neurol 1991;29:529-41 https://doi.org/10.1002/ana.410290513
  21. Olsen RW, Bureau M, Houser CR, Delgado-Escueta AV, Richards JG, Mohler H. GABA/benzodiazepine receptors in human focal epilepsy. Epilepsy Res Suppl 1992:8:383-91
  22. Henry TR, Frey KA, Sackellares JC, Gilman S, Koeppe RA, Brunberg JA, et al. In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy. Neurology 1993;43:1998-2006 https://doi.org/10.1212/WNL.43.10.1998
  23. Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988;2:863-6
  24. Savic I, Ingvar M, Stone-Elander S. Comparison of [11C]flumazenil and [18F]FDG as PET markers of epileptic foci. J Neurol Neurosurg Psychiatry 1993;56:615-21 https://doi.org/10.1136/jnnp.56.6.615
  25. Szelies B, Weber-Luxenburger G, Pawlik G, Kessler J, Holthoff V, Mielke R, et al. MRI-guided flumazenil- and FDG-PET in temporal lobe epilepsy. Neuroimage 1996;3:109-18 https://doi.org/10.1006/nimg.1996.0013
  26. Juhasz C, Chugani DC, Muzik O, Shah A, Shah J, Watson C, et al. Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 2001;56:1650-8 https://doi.org/10.1212/WNL.56.12.1650
  27. Goethals I, Van de Wiele C, Boon P, Dierckx R. Is central benzodiazepine receptor imaging useful for the identification of epileptogenic foci in localization-related epilepsies? Eur J Nucl Med Mol Imaging 2003;30:325-8 https://doi.org/10.1007/s00259-002-1083-z
  28. Juhasz C, Chugani DC, Muzik O, Watson C, Shah J, Shah A, et al. Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy. Neurology 2000;55:825-35 https://doi.org/10.1212/WNL.55.6.825
  29. Morrell F. Secondary epileptogenesis in man. Arch Neurol 1985;42:318-35 https://doi.org/10.1001/archneur.1985.04060040028009
  30. Morrell F. Varieties of human secondary epileptogenesis. J Clin Neurophysiol 1989;6:227-75 https://doi.org/10.1097/00004691-198907000-00002
  31. Sood S, Chugani HT. Functional neuroimaging in the preoperative evaluation of children with drug-resistant epilepsy. Childs Nerv Syst 2006;22:810-20 https://doi.org/10.1007/s00381-006-0137-0
  32. Yamauchi H, Kudoh T, Kishibe Y, Iwasaki J, Kagawa S. Selective neuronal damage and borderzone infarction in carotid artery occlusive disease: a 11C-flumazenil PET study. J Nucl Med 2005; 46:1973-9
  33. Schwartz-Bloom RD, Sah R. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem 2001;77: 353-71 https://doi.org/10.1046/j.1471-4159.2001.00274.x
  34. Neumann-Haefelin T, Bosse F, Redecker C, Muller HW, Witte OW. Upregulation of GABAA-receptor alpha1- and alpha2-subunit mRNAs following ischemic cortical lesions in rats. Brain Res 1999;816:234-7 https://doi.org/10.1016/S0006-8993(98)01162-7