Imaging of Dopamine Release Induced by Pharmacologic and Nonpharmacologic Stimulations

약물 및 비약물 자극에 의한 도파민 유리 영상

  • Cho, Sang-Soo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Sang-Eun (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 조상수 (서울대학교 의과대학 핵의학교실) ;
  • 김상은 (서울대학교 의과대학 핵의학교실)
  • Published : 2007.04.30

Abstract

Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

Keywords

References

  1. Cropley VL, Fujita M, Innis RB, Nathan PJ. Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 2006;59:898-907 https://doi.org/10.1016/j.biopsych.2006.03.004
  2. Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol 1989;40:191-225 https://doi.org/10.1146/annurev.ps.40.020189.001203
  3. Kalivas PW, Nakamura M. Neural systems for behavioral activation and reward. Curr Opin Neurobiol 1999;9:223-7 https://doi.org/10.1016/S0959-4388(99)80031-2
  4. Taber MT, Fibiger HC. Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci 1995;15(5 Pt 2):3896-904 https://doi.org/10.1523/JNEUROSCI.15-05-03896.1995
  5. Corrigall WA, Coen KM. Dopamine mechanisms play at best a small role in the nicotine discriminative stimulus. Pharmacol Biochem Behav 1994;48:817-20 https://doi.org/10.1016/0091-3057(94)90353-0
  6. Pontieri FE, Tanda G, Orzi F, Di Chiara G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996;382:206-7 https://doi.org/10.1038/382206a0
  7. Crooks PA, Dwoskin LP, Contribution of CNS nicotine metabolites to the neuropharmacological effects of nicotine and tobacco smoking. Biochem Pharmacol 1997;54:743-53 https://doi.org/10.1016/S0006-2952(97)00117-2
  8. Rahman S, Zhang J, Engleman EA, Corrigall WA. Neuroadaptive changes in the mesoaccumbens dopamine system after chronic nicotine self-administration: a microdialysis study. Neuroscience 2004;129:415-24 https://doi.org/10.1016/j.neuroscience.2004.08.010
  9. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 1992;13:177-84 https://doi.org/10.1016/0165-6147(92)90060-J
  10. Fuxe K, Andersson K, Harfstrand A, Agnati LF. Increases in dopamine utilization in certain limbic dopamine terminal populations after a short period of intermittent exposure of male rats to cigarette smoke. J Neural Transm 1986;67(1-2):15-29 https://doi.org/10.1007/BF01243355
  11. Schwartz RD, Kellar KJ. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 1983;220:214-6 https://doi.org/10.1126/science.6828889
  12. Di Chiara G. 2000. Role of dopamine in the behavioral actions of nicotine related to addiction. Eur J Pharmacol 2000;393:295-314 https://doi.org/10.1016/S0014-2999(00)00122-9
  13. Dewey SL, Brodie JD, Gerasimov M, Horan B, Gardner EL, Ashby CR Jr. A pharmacologic strategy for the treatment of nicotine addiction. Synapse 1999;31:76-86 https://doi.org/10.1002/(SICI)1098-2396(199901)31:1<76::AID-SYN10>3.0.CO;2-Y
  14. Salokangas RK, Vilkman H, Ilonen T, Taiminen T, Bergman J, Haaparanta M, Solin O, Alanen A, Syvalahti E, Hietala J. High levels of dopamine activity in the basal ganglia of cigarette smokers. Am J Psychiatry 2000;157:632-4 https://doi.org/10.1176/appi.ajp.157.4.632
  15. Dagher A, Bleicher C, Aston JA, Gunn RN, Clarke PB, Cumming P. Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 2001;42:48-53 https://doi.org/10.1002/syn.1098
  16. Staley JK, Krishnan-Sarin S, Zoghbi S, Tamagnan G, Fujita M, Seibyl JP, Maciejewski PK, O'Malley S, Innis RB. Sex differences in [$^{123}I$]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 2001;41:275-84 https://doi.org/10.1002/syn.1084
  17. Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, Lee GS, Huang J, Hahn EL, Mandelkern MA. Smoking-induced ventral striatum dopamine release. Am J Psychiatry 2004;161:1211-8 https://doi.org/10.1176/appi.ajp.161.7.1211
  18. Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [$^{11}C$]raclopride. Synapse 2004;54:65-71 https://doi.org/10.1002/syn.20066
  19. Kim YK, Cho SS, Lee D, Ryu H, Lee EJ, Ryu CH, Jeong IS, Hong SK, Lee JS, Seo H, Jeong JM, Lee WW, Kim SE. Smoking-Induced dopamine release studied with [$^{11}C$]raclopride PET. Korean J Nucl Med 2005;39:421-29
  20. Rowell PP, Li M. Dose-response relationship for nicotine-induced up-regulation of rat brain nicotinic receptors. J Neurochem 1997;68:1982-9 https://doi.org/10.1046/j.1471-4159.1997.68051982.x
  21. Jung IS, Hong SK, Kim SE. Effect of acute and chronic nicotine administration on dopamine uptake in tat striatum. J Nucl Med 2007 [Abstract] in press
  22. Daly JW, Holmen J, Fredholm BB. Caffeine-an atypical drug of dependence. Drug Alcohol Depend 1998;51(1-2):199-206 https://doi.org/10.1016/S0376-8716(98)00059-3
  23. Ferre S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997;20:482-7 https://doi.org/10.1016/S0166-2236(97)01096-5
  24. Tan EK, Tan C, Fook-Chong SMC, Lum SY, Chai A, Chung H, et al. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson's disease: a study in ethnic Chinese. J Neurological Sciences 2003;216:163-7 https://doi.org/10.1016/j.jns.2003.07.006
  25. Ryan M, Slevin JT. Restless legs syndrome. Am J Health Syst Pharm. 2006;63:1599-612 https://doi.org/10.2146/ajhp060031
  26. Kaasinen V, Aalto S, Nagren K, Rinne JO. Dopaminergic effects of caffeine in the human striatum and thalamus. Neuroreport 2004;15:281-5 https://doi.org/10.1097/00001756-200402090-00014
  27. Walsh V, Rushworth M. A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 1999;37:125-35 https://doi.org/10.1016/S0028-3932(98)00087-6
  28. Padberg F, Juckel G, Prassl A, Zwanzger P, Mavrogiorgou P, Hegerl U, Hampel H,Moller HJ. Prefrontal cortex modulation of mood and emotionally induced facial expressions:a transcranial magnetic stimulation study. J Neuropsychiatry Clin Neurosci 2001; 3:206-12
  29. Kozel FA, George MS. Meta-analysis of left prefrontal repetitive transcranial magnetic stimulation (rTMS) to treat depression. J Psychiatr Pract 2002;8:270-5 https://doi.org/10.1097/00131746-200209000-00003
  30. Bortolomasi M, Minelli A, Fuggetta G, Perini M, Comencini S, Fiaschi A, Manganotti P. Long-lasting effects of high frequency repetitive transcranial magnetic stimulation in major depressed patients. Psychiatry Res 2007;150:181-6 https://doi.org/10.1016/j.psychres.2006.04.010
  31. Loo CK, Mitchell PB, McFarquhar TF, Malhi GS, Sachdev PS. A sham-controlled trial of the efficacy and safety of twice-daily rTMS in major depression. Psychol Med 2007;37:341-9 https://doi.org/10.1017/S0033291706009597
  32. Paus T, Castro-Alamancos MA, Petrides M. Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neuroscience 2001;14:1405-11 https://doi.org/10.1046/j.0953-816x.2001.01757.x
  33. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive Transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. The J Neuroscience 2001;21:1-4
  34. Strafella AP, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 2003;126:2609-15 https://doi.org/10.1093/brain/awg268
  35. Murase S, Grenhoff J, Chouvet O, Gonon FC. Svensson, T.H., 1993. Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosct Leth 1993;157:53-6 https://doi.org/10.1016/0304-3940(93)90641-W
  36. Karreman M, Moghaddam B. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J Neurochem 1996;66:589-98 https://doi.org/10.1046/j.1471-4159.1996.66020589.x
  37. Ohnishi T, Hayashi T, Okabe S, Nonaka I, Matsuda H, Iida H, Imabayashi E, Watabe H, Miyake Y, Ogawa M, Teramoto N, Ohta Y, Ejima N, Sawada T, Ugawa Y. Endogenous dopamine release induced by repetitive transcranial magnetic stimulation over the primary motor cortex: an [$^{11}C$]raclopride positron emission tomography study in anesthetized macaque monkeys. Biol Psychiatry 2004;55: 484-9 https://doi.org/10.1016/j.biopsych.2003.09.016
  38. Pogarell O, Koch W, Popperl G, Tatsch K, Jakob F, Zwanzger P, et al. Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: Preliminary results of a dynamic [$^{123}I$] IBZM SPECT study. J Psychiatr. Res 2006; 40:307-14 https://doi.org/10.1016/j.jpsychires.2005.09.001
  39. Cho SS, Yoon EJ, Kim YK, Lee WW, Kim SE. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex. J Nucl Med 2006 [Abstract]
  40. Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O. Corticostriatal functional interactions in Parkinson's disease: a rTMS/[$^{11}C$]raclopride PET study. Eur J Neurosci 2005;22:2946-52 https://doi.org/10.1111/j.1460-9568.2005.04476.x
  41. Kuroda Y, Motohashi N, Ito H, Ito S, Takano A, Nishikawa T, Suhara T. Effects of repetitive transcranial magnetic stimulation on [$^{11}C$]raclopride binding and cognitive function in patients with depression. J Affect Disord 2006;95(1-3):35-42 https://doi.org/10.1016/j.jad.2006.03.019
  42. Rothwell JC. Techniques and mechanisms of action of transcranial magnetic stimulation of the human motor cortex. J Neurosci Methods 1997;74:113-22 https://doi.org/10.1016/S0165-0270(97)02242-5
  43. Wassermann EM, Kimbrell TA, George MS. Local and distant changes in cerebral glucose metabolism during repetitive transcranial magnetic stimulation (rTMS). Neurology 1997 [abstract] 48
  44. Benedetti F, Mayberg HS, Wager TD, Stohler CS, Zubieta JK. Neurobiological mechanisms of the placebo effect. J Neurosci 2005;25:10390-402 https://doi.org/10.1523/JNEUROSCI.3458-05.2005
  45. Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet 1978;2:654-7
  46. Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioningactivated specific subsystems. J Neurosci 1999;19:484-94 https://doi.org/10.1523/JNEUROSCI.19-01-00484.1999
  47. Colloca L, Benedetti F. Placebos and painkillers: is mind as real as matter? Nat Rev Neurosci 2005;6:545-52 https://doi.org/10.1038/nrn1705
  48. Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L, Telang F, Vaska P,Ding YS, Wong C, Swanson JM. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci 2003;23:11461-8 https://doi.org/10.1523/JNEUROSCI.23-36-11461.2003
  49. Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, Rainero I. Conscious expectation and unconscious conditioning in analgesic, motor and hormonal placebo/nocebo responses. J Neurosci 2003: 23:4315-23 https://doi.org/10.1523/JNEUROSCI.23-10-04315.2003
  50. Khan A, Warner HA, Brown WA. Symptom reduction and suicide risk in patients treated with placebo in antidepressant clinical trials: an analysis of the FDA database. Arch Gen Psychiatry 2000;57: 311-7 https://doi.org/10.1001/archpsyc.57.4.311
  51. Walsh BT, Seidman SN, Sysko R, Gould M. Placebo response in studies of major depression: variable, substantial, and growing. JAMA 2002;287:1840-7 https://doi.org/10.1001/jama.287.14.1840
  52. Shetty N, Friedman JH, Kieburtz K, Marshall FJ, Oakes D. The placebo response in Parkinson's disease. Parkinson Study Group. Clin Neuropharmacol 1999;22:207-12
  53. Kaasinen V, Aalto S, Nagren K, Rinne JO. Expectation of caffeine induces dopaminergic responses in humans. Eur J Neurosci 2004;19:2352-6 https://doi.org/10.1111/j.1460-9568.2004.03310.x
  54. de la Fuente-Fernandez R, Phillips AG, Zamburlini M, Sossi V, Calne DB, Ruth TJ, Stoessl AJ. Dopamine release in human ventral striatum and expectation of reward. Behav Brain Res 2002;136: 359-63 https://doi.org/10.1016/S0166-4328(02)00130-4
  55. Strafella AP, Ko JH, Monchi O. Therapeutic application of transcranial magnetic stimulation in Parkinson's disease: the contribution of expectation. Neuroimage 2006;31:1666-72 https://doi.org/10.1016/j.neuroimage.2006.02.005