Fate and Transport of Cr(VI) Contaminated Groundwater from the Industrial Area in Daejeon

대전 산업단지 지하수의 6가 크롬 오염 및 확산 평가

  • Published : 2007.08.28

Abstract

The objective of this research was to characterize the fate and transport of Cr(VI) contaminated groundwater in the Daejeon industrial area. Five subsidiary monitoring wells were newly installed and two existing wells were utilized for the investigation and the reduction process of Cr(VI) contaminated groundwater of the Daejeon(Mun-pyeong) national groundwater monitoring station. The Cr(VI) concentrations at the shallow aquifer well of the station were in the range of 3.2-4.5 mg/L indicating continuous contamination. However, Cr was not detected at the deep bedrock well and the other monitoring wells except MPH-1 and 3. The Cr(VI) concentrations of MPH-1 and MPH-3 were below the drinking water guideline value (0.05 mg/L). Therefore, the plume of the Cr(VI) contaminated groundwater was predicted to be confined within the narrow boundary around the station. The soluble/exchangeable Cr(VI) concentrations were below the detection limit in all core and slime samples taken from the five newly installed wells. Although the exact source of contamination was not directly detected in the study area, the spatial Cr(VI) distribution in groundwater and characteristics of the core samples indicated that the source and the dispersion range were confined within the 100 m area from the monitoring station. The contamination might be induced from the unlined landfill of industrial wastes which was observed during the installation of an subsidiary monitoring well. For the evaluation of the natural attenuation of Cr(VI), available reduction capacities of Cr(VI) with an initial concentration of 5 mg/L were measured in soil and aquifer materials. Dark-gray clay layer samples have high capacities of Cr(VI) reduction ranging from 58 to 64%, which is obviously related to organic carbon contents of the samples. The analysis of reduction capacities implied that the soil and aquifer materials controlled the dispersion of Cr(VI) contamination in this area. However, some possibilities of dispersion by the preferential flow cannot be excluded due to the limited numbers of monitoring wells. We suggest the removal of Cr(VI) contaminated groundwater by periodical pumping, and the continuous groundwater quality monitoring for evaluation of the Cr(VI) dispersion should be followed in the study area.

본 연구의 목적은 대전 산업단지 폐수종말처리장 내 국가지하수관측망(대전, 문평)의 6가 크롬 오염지하수의 오염 현황을 파악하고 그 확산 여부를 평가하는 것이다. 대전(문평) 관측소에서 나타나는 6가 크롬($Cr^{+6}$) 수질장해의 원인을 규명하고 6가 크롬의 오염 범위를 파악하기 위해 금번 연구에서는 보조 관측정을 설치 활용하였다. 수질분석 결과, 6가 크롬이 $3.2{\sim}4.5mg/L$ 정도 검출됨으로써 6가 크롬에 의한 관측소 충적공의 수질오염은 지속되고 있음이 파악되었다. 그러나 관측소의 암반관정 및 0.05mg/L 수질기준 이하의 농도를 보이는 MPH-1과 3번 관측공을 제외한 주변 관측공에서는 검출되지 않았다. 따라서 6가 크롬 및 총 크롬 함량의 오염 범위는 관측소 충적층 관정 인근에 한정되어 나타나고 있는 것으로 파악되었다. 또한 신규 5개 보조 관측정에서 채취한 77개의 시추 코어 및 슬라임 시료 모두에서 수용성/교환성 6가 크롬이 검출 한계(0.01mg/L) 이하로 나타나, 오염이 관측된 관측소 관정 주변의 토양 및 풍화토에서는 직접적으로 6가 크롬의 오염원이 확인되지 않았다. 지하수 수질분석 및 코어시료 분석 결과, 그 오염원의 중심 및 오염 확산 범위는 관측소 주위 반경 100m 이내로 매우 한정되는 것으로 판단되며 그 확산의 범위가 매우 좁을 것으로 예상된다. 시추조사 결과, 폐수종말처리장 부지조성 당시의 불량 매립층이 확인되었으며, 이러한 불량 매립산업폐기물이 관측소 인근의 6가 크롬 수질장해 원인으로 추론된다. 지표매질의 6가 크롬 자연저감능 평가를 위해 초기 농도 5mg/L Cr(VI)을 이용한 6가 크롬 유효 환원능을 분석하였다. 그 결과, 암회색 점토층에서 각각 58%, 66%, 64% 정도의 높은 6가 크롬 저감율을 보였으며, 이는 유기물 함량과 상호 관련이 있을 것으로 판단되었다. 비포화대/충적층 매질에 대한 6가 크롬 함량 및 자연저감 능력의 정량적 평가 결과, 매질에 의한 6가 크롬의 자연 저감능이 확인되었으며 관정 주변으로의 오염 확산은 충분히 제어되고 있는 것으로 판단된다. 그러나 시추 관측정 및 기설 관정의 수가 부족했기 때문에 매우 제한적인 선택적 유동(preferential flow) 경로에 의한 확산 가능성을 완전히 배제할 수 없다. 정기적인 양수작업을 통하여 지하수에 부화된 6가 크롬의 농도를 지속적으로 제거하고 관측소 주변에 설치된 보조 관측정들을 지속적으로 활용하여 6가 크롬의 농도 변화 추이 및 시간의 흐름에 따른 오염 확산 여부를 지속적으로 관측하고 감시하는 방안이 필요할 것으로 판단된다.

Keywords

References

  1. Amacher, M.C. and Selim, H.M. (1994) Mathematical models to evaluate retention and transport of chromium(VI) in soil. Ecol. Model. v. 74, p. 205-230 https://doi.org/10.1016/0304-3800(94)90120-1
  2. Bartlett, R.J. and James, B.R. (1988) Mobility and bioavailability of chromium in soils: In Nriagu, J.O. and Nieboer, E. eds., Chromium in nature and human environments. John Wiley & Sons Inc., New York, p. 267-304
  3. Bowman, R.S., Zhaohui, L., Roy, S.J., Burt, T., Johnson, T.L. and Johnson. R.L. (1999) Surface-altered zeolites as permeable barriers for in situ treatment of contaminated groundwater. Phase II Topical Report for the U.S. Department of Energy, Pittsburgh, Pennsylvania. August 1999
  4. Burdick, J.S., and Jacobs., D.L. (1998) Field scale applications to demonstrate enhanced transformations of chlorinated aliphatic hydrocarbons. Presented at the Northeast Focus Ground Water Conference, October 20-21, 1998, pp.131-145
  5. Chirwa, E.M.N. and Wang, Y.T. (1997) Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environ. Sci. Technol., v. 31, p. 1446-1451 https://doi.org/10.1021/es9606900
  6. Chon, C.-M., Kim, J.G. and Moon, H.-S. (2006) Kinetics of chromate reduction by pyrite and biotite under acidic conditions. Applied Geochemistry, v. 21, p. 1469-1481 https://doi.org/10.1016/j.apgeochem.2006.06.012
  7. Chon, C.-M., Kim, J.G. and Moon, H.-S. (2007) Evaluating the transport and removal of chromate using pyrite and biotite column. Hydrological Processes, v. 21, p. 1957-1967 https://doi.org/10.1002/hyp.6408
  8. Cummings, M. and Booth, S. (1997) Cost effectiveness of in situ redox manipulation for remediation of chromium-contaminated groundwater. LA-UR-97-165. March, 1997
  9. Dusing, D.C., Bishop, P.L. and Keener, T.C. (1992) Effect of redox potential on leaching from stabilized/solidified waste materials. J. Air Waste Manage. Assoc., v. 42, p. 56-62 https://doi.org/10.1080/10473289.1992.10466970
  10. Eary, L.E. and Rai, D. (1989) Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at $25^{\circ}C$. Am. J Sci., v. 289, p. 180-213 https://doi.org/10.2475/ajs.289.2.180
  11. Eary, L.E. and Rai, D. (1987) Kinetics of chromium(VI) by reaction with manganese dioxide. Environ. Sci. Technol., v. 21, p. 1187-1193 https://doi.org/10.1021/es00165a005
  12. Eary, L.E. and Rai, D. (1988) Chromate removal from aqueous wastes by reduction with ferrous iron. Environ. Sci. Technol., v. 22, p. 972-977 https://doi.org/10.1021/es00173a018
  13. Eary, L.E. and Rai, D. (1991) Chromate reduction by subsurface soils under acidic conditions. Soil Sci. Soc. Am. J., v. 55, p. 676-683 https://doi.org/10.2136/sssaj1991.03615995005500030007x
  14. Fendorf, S.E. and Li, G. (1996) Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol., v. 30, p. 1614-1617 https://doi.org/10.1021/es950618m
  15. Fendorf, S.E. and Zasoski, R.J. (1992) Chromium(III) oxidation by ${\delta}-MnO_{2}$ : 1. Characterization. Envron. Sci. Technol., v. 26, p.79-85 https://doi.org/10.1021/es00025a006
  16. Hyun, J.H (1993) Equilibria and kinetics of Cr(VI) reduction. J. Engeer. Geol., v. 3, p. 191-201
  17. James, B.R. and Bartlett, R. J. (1983) Behavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation. J. Environ. Qual., v. 12, p. 173-176 https://doi.org/10.2134/jeq1983.00472425001200020004x
  18. Khan, F. (1999) In situ treatment of chromium source area using redox manipulation. Presentation for the USEPA Conference on Abiotic In Situ Technologies for Groundwater Remediation, Dallas, Texas. August, 1999
  19. Kvasnikov, E.I., Stepanynk, V.V., Klyushnikova, T.M., Serpokrylov, N.S., Simonova, G.A., Kasatkina, T.P. and Panchenko, L.P. (1988) A new chromium-reducing gram-variable bacterium with mixed type of flagellation. Mikrobiologiya, v. 57, p. 680-685
  20. Lebedeva, E.V. and Lyalikova, N.N. (1979) Reduction of crocoite by Pseudomonas chromatophila species nava. Mikrobiologiya, v. 48, p. 517-522
  21. MOCT, Kwater and KIGAM (2005) Research report on measure for worry area of contaminated ground water
  22. Nriagu, J.O. and Nieboer, E. eds. (1988) Chromium in nature and human environments. John Wiley & Sons Inc., New York, 571p
  23. Palmer, C.D. and Puis., R.W. (1994) Natural attenuation of hexavelent chromium in ground water and soils. EPA/540/S-94/505
  24. Rai, D., Eary, L.E. and Zachara, J.M. (1989) Environmental chemistry of chromium. Sci. Total Environ., v. 86, p. 15-23 https://doi.org/10.1016/0048-9697(89)90189-7
  25. Romanenko, V.I. and Korenkov, V.N. (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya, v. 46, p. 414-417
  26. Saleh, F.Y., Parkerton, T.F., Lewis, R.V., Huang, J.H. and Dickson, K.L. (1989) Kinetics of chromiumtransformation in the environment. Sci. Total Environ., v. 86, p. 25-41 https://doi.org/10.1016/0048-9697(89)90190-3
  27. Shen, H. and Wang Y.T. (1995) Simulataneous chromium reduction and phenol degradation in a coculture of escherchia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl. Environ. Microbial., v. 61, p. 2754-2758
  28. Thomasser, R.M. (1999) Pilotstudy groundwater monitoring results. Monthly, Quarterly, and Annual Status Reports to the USEPA, Region IX, 1999
  29. Thomasser, R.M., and Rouse, J.Y. (1999) In situ remediation of chromium contamination of soil and ground water. Paper presentation for the american wood preservers association, May, 1999 Conference on assessment and remediation of soil and ground water contamination at wood treating sites
  30. Tratny, P.G. and Wolfe, N.L. (1990) Characterization of the reducting properties of anaerobic sediment slurries using redox indicators. Environ. Toxicol. Chem., v. 9, p. 289-295 https://doi.org/10.1897/1552-8618(1990)9[289:COTRPO]2.0.CO;2
  31. U.S. Environmental Protection Agency (1993) EPA updates CERCLA priority list of hazardous substances. The hazardous waste consultant, 10(5), McCoy and Assciates, Inc., Lakewood, Colo., p.2.26-2.30
  32. U.S. Environmental Protection Agency (1999a) An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water: Volume 1 Design and Installation, EPA/600/R-99/095a. September 1999
  33. U.S. Environmental Protection Agency (1999b) An In Situ Permeable Reactive Barrier for the treatment of hexavalent chromium and trichloroethylene in ground water: Volume 2 Performance Monitoring, EPA/600/R-99/095b. September 1999
  34. U.S. Environmental Protection Agency (1999c) An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water: Volume 3 Multicomponent Reactive Transport Modeling. EPA/600/R-99/095c. September 1999
  35. U.S. Environmental Protection Agency (2000) In situ treatment of soil and groundwater contaminated with chromium Technical resource guide. EPA/625/R-00/005, Office of Research and Development, Washington, October 2000
  36. Vitale, R.J., Mussoline, G.R., Petura, J.C. and James, B.R. (1994) Hexavalent Chromium Extraction from soils: Evaluation of alkaline digestion method. J. Environ. Qual., v. 23, p. 1249-1256 https://doi.org/10.2134/jeq1994.00472425002300060018x
  37. Vitale, R.J., Mussoline, G.R., Rinehimer, K.A, Petura, J.C. and James, B.R. (1997) Extraction of sparingly soluble chromate from soils: Evaluation of methods and Eh-pH effects. Environ. Sci. Technol., v. 31, p. 390-394 https://doi.org/10.1021/es960202o
  38. Wang, P., Mori, T., Komori, K., Sasatsu, M., Toda, K. and Ohdake, H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbial., v. 55, p. 1665-1669
  39. Wang, Y.T. and Shen, H. (1995) Bacterial reduction of hexavalent chromium. J. Ind. Microbiol., v. 14, p. 159-163 https://doi.org/10.1007/BF01569898
  40. Zachara, J.M., Ainsworth, C.C., Cowan, C. and Resch, C.T. (1989) Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J., v. 53, p. 418-428 https://doi.org/10.2136/sssaj1989.03615995005300020018x
  41. Zachara, J.M., Girvin, D.C., Schmidt, R.L. and Resch, C.T. (1987) Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Technol., v. 21, p. 589-594 https://doi.org/10.1021/es00160a010