DOI QR코드

DOI QR Code

Development $K_d({\lambda})$ and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea

황해 중부 연안 해역에서의 해색센서용 하향 확산 감쇠계수 및 수중시계 추정 알고리즘 개발

  • Min, Jee-Eun (Ocean Satellite Research Group, Korean Ocean Research & Development Institute (KORDI)) ;
  • Ahn, Yu-Hwan (Ocean Satellite Research Group, Korean Ocean Research & Development Institute (KORDI)) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University) ;
  • Ryu, Joo-Hyung (Ocean Satellite Research Group, Korean Ocean Research & Development Institute (KORDI))
  • 민지은 (한국해양연구원 해양위성연구단) ;
  • 안유환 (한국해양연구원 해양위성연구단) ;
  • 이규성 (인하대학교 지리정보공학과) ;
  • 유주형 (한국해양연구원 해양위성연구단)
  • Published : 2007.08.30

Abstract

The diffuse attenuation coefficient for down-welling irradiance $K_d({\lambda})$, which is the propagation of down-welling irradiance at wavelength ${\lambda}$ from surface to a depth (z) in the ocean, and underwater visibility are important optical parameters for ocean studies. There have been several studies on $K_d({\lambda})$ and underwater visibility around the world, but only a few studies have focused on these properties in the Korean sea. Therefore, in the present study, we studied $K_d({\lambda})$ and underwater visibility around the coastal area of the Yellow Sea, and developed $K_d({\lambda})$ and underwater visibility algorithms for ocean color satellite sensor. For this research we conducted a field campaign around the Yellow Sea from $19{\sim}22$ September, 2006 and there we obtained a set of ocean optical and environmental data. From these datasets the $K_d({\lambda})$ and underwater visibility algorithms were empirically derived and compared with the existing NASA SeaWiFS $K_d({\lambda})$ algorithm and NRL (Naval Research Laboratory) underwater visibility algorithm. Such comparisons over a turbid area showed small difference in the $K_d({\lambda})$ algorithm and constants of our result for underwater visibility algorithm showed slightly higher values.

해수 속으로 입수된 하향 태양에너지 (down-welling irradiance)가 수심이 깊어짐에 따라 확산 소산되는 정도를 나타내는 하향 확산 감쇠계수 (Diffuse attenuation coefficient of down-welling irradiance, $K_d({\lambda})$)와 해수 속에서의 가시거리를 나타내는 수중시계는 수중에서의 광학적 성격을 나타내는 중요한 지수이다. 이러한 $K_d({\lambda})$ 및 수중시계에 대한 많은 연구가 세계적으로 여러 해역에 대해 수행되어 왔지만 우리나라 연안 해역을 대상으로 하는 연구는 매우 적은 실정이다. 따라서 본 연구에서는 우리나라의 황해 중부해역을 대상으로 $K_d({\lambda})$ 및 수중시계를 관측하였고, 해색위성용 $K_d({\lambda})$ 및 수중시계 알고리즘을 개발하였다. $K_d({\lambda})$ 및 수중시계 관측을 위하여 2006년 9월 $19{\sim}22$일, 4일 동안 황해 중부해역에서 현장관측을 실시하였으며, 총 39개 정점에서 해양 광학적 자료와 해양 환경적 자료를 획득하였다. 획득된 자료를 이용하여 경험적 방법으로 $K_d({\lambda})$와 수중시계 알고리즘을 개발하였으며, 개발된 알고리즘들은 각각 기존의 대양의 자료를 이용하여 개발된 SeaWiFS 해색 센서용 $K_d({\lambda})$ 알고리즘과 NRL (Naval Research Laboratory)에서 개발된 SeaWiFS 센서용 수중시계 알고리즘과 비교하여 보았다. $K_d({\lambda})$ 알고리즘의 경우는 탁도가 높은 해역 값에서 약간의 차이를 보였으며, 수중시계 알고리즘의 경우 NRL의 알고리즘에 비해 약간 높은 계수 값을 얻었다.

Keywords

References

  1. 서영상, 한상복, 강용균, 1993. NOAA 원격자료에 의한 황해 남동부 투명도의 추정, 대한원격탐사학회지, 9(2): 1-5
  2. 이상호, 최현용, 손영태, 권효근, 김영곤, 양재삼, 정해진, 김종구, 2003. 하계 서해안 새만금 연안역 주변 저염수의 순환, 한국해양학회지, 8(2): 138-150
  3. 최용규와 권정노, 1998. 황해 남동해역 투명도의 계절 변화, 한국수산학회지, 31(3): 323-329
  4. Austin, R. W. and T. J Petzold, 1981. The determination of the diffuse attenuation coefficient of sea water using the coastal zone color scanner, Oceanography From Space, Springer, New York
  5. Austin, R. W. and T. J. Petzold, 1986. Spectral dependence of the diffuse attenuation coefficient of light in ocean waters, Optical Engineering, 25: 473-479
  6. Chang, G. C. and T. D. Dickey, 2004. Coastal ocean optical influences on solar transmission and radiant heating rate, Journal of Geophysical Research, 109: C01020, doi:10.1029/2003JC001821
  7. Jeffrey, S. W. and Humphrey, G. F., 1975. New spectrophotometric equations for determining chlorophylls a, b and c in higher plants, algea and natural phytoplankton, Biochemie Physiologie Pflanzen, 167: 374-384
  8. Kirk, J. T. O., 1986. Light and Photosynthesis in Aquatic Ecosystems, Cambridge Univ. Press, New York
  9. Lee, Z. P., K. L. Carder, and R. Armone, 2002. Deriving inherent optical properties from water color: A multi-band quasi-anayltical algorithmfor optically deep waters, Applied Optics, 41: 5,755-5772 https://doi.org/10.1364/AO.41.005755
  10. Lee, Z. P., M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, 2005. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods, Journal of Geophysical Research, 110: C02017, doi:10.1029/2004JC002573
  11. Lewis, M. R., M. Carr, G. Feldman, W. Esaias, and C. McMclain, 1990. Influence of penetrating solar radiation on the heat budget of the equatorial pacific ocean, Nature, 347: 543 -545 https://doi.org/10.1038/347543a0
  12. Marra, J., C. Langdon, and C. A. Knudson, 1995. Primary production, water column changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed Layers site (59_N, 21_W) in the northeast Atlantic Ocean, Journal of Geophysical Research, 100: 6,633-6,644
  13. McClain, C. R., K. Arrigo, K.-S. Tai, and D. Turk, 1996. Observations and simulations of physical and biological processes at ocean weather station P, 1951-1980, Journal of Geophysical Research, 101: 3,697-3,713
  14. Mishra, D. R., S. Narumalani, and M. Lawson, 2005. Characterizing the vertical diffuse attenuation coefficient for downwelling irradiance in coastal waters: Implications for water penetration by high resolution satellite data, ISPRS Journal of Photogrammetry & Remote Sensing, 60: 48-64 https://doi.org/10.1016/j.isprsjprs.2005.09.003
  15. Morel, A. and Prieur, L., 1977. Analysis of variations in ocean colour, Limnology and Oceanography, 22: 709-722 https://doi.org/10.4319/lo.1977.22.4.0709
  16. Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), Journal of Geophysical Research, 93: 10,749-10,768 https://doi.org/10.1029/JC093iC09p10749
  17. Morel, A. and D. Antoine, 1994. Heating rate within the upper ocean in relation to its bio-optical state, Journal of Physical Oceanography, 24: 1,652-1,665 https://doi.org/10.1175/1520-0485(1994)024<1652:HRWTUO>2.0.CO;2
  18. Morel, A. and S. Maritorena, 2001. Bio-optical properties of oceanic waters: A reappraisal, Journal of Geophysical Research, 106: 7,163-7,180
  19. Mueller, J. L., 2000. SeaWiFS algorithm for the diffuse attenuation coefficient, K(490), using water-leaving radiances at 490 and 555 nm, SeaWiFS Postlaunch Calibration and Validation Analyses, part 3: 24-27
  20. Mueller, J. L. and C. C. Trees, 1997. Revised SeaWiFS prelaunch algorithm for diffuse attenuation coefficient K (490), NASA Tech. Memo., TM-104566, 41: 18-21
  21. Museler, E. A., 2003. A comparison of in-situ measurements and satellite remote sensing of underwater visibility, Master's thesis, Naval Postgrauate School, Monterey, CA, 93943-5000
  22. Platt, T., S. Sathyendranath, C. M. Caverhill, and M. Lewis, 1988. Ocean primary production and available light: Further algorithms for remote sensing, Deep Sea Research, 35: 855-879 https://doi.org/10.1016/0198-0149(88)90064-7
  23. Preisendorfer, R. W., 1976. Hydrologic optics, U.S. Department of Commerce, 1: 218
  24. Rasmus, K. E., W. Graneli, and S. -A. Wangberg, 2004. Optical studies in the Southern Ocean, Deep-Sea Research Part II, 51: 2,583-2,597 https://doi.org/10.1016/j.dsr2.2001.01.004
  25. Sathyendranath, S., T. Platt, C. M. Caverhill, R. E. Warnock, and M. R. Lewis, 1989. Remote sensing of oceanic primary production: Computations using a spectral model, Deep Sea Research, 36: 431-453 https://doi.org/10.1016/0198-0149(89)90046-0
  26. Smith, R. C. and K. S. Baker, 1981. Optical properties of the clearest natural waters, Applied Optics, 20: 177-184 https://doi.org/10.1364/AO.20.000177
  27. Zaneveld, J. R. V., J. C. Kitchen, and H. Pak, 1981. The influence of optical water type on the heating rate of a constant depth mixed layer, Journal of Geophysical Research, 86: 6,426-6,428
  28. 한국해양연구원 새만금해양환경연구센터 홈페이지 http://www.saemangeum.re.kr/