References
- Ahmad, J. S. and Baker, R. 1985. Induction of rhizosphere competence in Trichoderma harrlanum. Phytopathology 75:1302 (Abstr.)
- Bae, Y.-S., Kim, H.-K. and Park, C.-S. 1990. An improved method for rapid screening and analysis of root colonizing ability ofbiocontrol agent. Kor. J. Plant Pathol. 6:325-332
- Bae, Y.-S., Park, K.-S. and Kim, C.-H. 2004. Bacillus spp. as bio-control agents of root rot and Phytophthora blight on ginseng. Plant Pathol. J. 20:63-66 https://doi.org/10.5423/PPJ.2004.20.1.063
- Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Ann. Rev. Phytopathol. 31 :53-80 https://doi.org/10.1146/annurev.py.31.090193.000413
- Duffy, B. K and Defago, G 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65:2429-2438
- Fuchs, J.-G, Moenne-Loccoz, Y and Defago, G 2000. The laboratory medium used to grow biocontrol Pseudomonas sp. Pf153 influences its subsequent ability to protect cucumber from black root rot. Soil Biol. Biochem. 32:421-424 https://doi.org/10.1016/S0038-0717(99)00169-8
- Gu, Y.-H. and Mazzola, M. 2001. Impact of carbon starvation on stress resistance, survival in soil habitats and biocontrol ability of Pseudomonas putida strain 2C8. Soil Biol. Biochem. 33: 1155-1162 https://doi.org/10.1016/S0038-0717(01)00019-0
- Gupta, C. P., Dubey, R. C. and Maheshwari, D. K 2002. Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseodomonas. Biol. Fertil. Soils 35:399-405 https://doi.org/10.1007/s00374-002-0486-0
- Heungens, K and Parke, J. L. 2000. Zoospore homing and infection events: Effects of the biocontrol bacterium Burkholderia cepacia AMMDRI on two oomycete pathogens of pea (Pisum sativum L.). Appl. Environ. Microbiol. 66:5192-5200 https://doi.org/10.1128/AEM.66.12.5192-5200.2000
- Hultberg, M., Alsanius, B. and Sundin, P. 2000. In vivo and in vitro interactions between Pseudomonas fluorescens and Pythium ultimumin the suppression of damping-off in tomato seedlings. Bio. Control 19: 1-8 https://doi.org/10.1006/bcon.2000.0840
- Jeun, Y.-C., Lee, Y.-J. and Bae, Y.-S. 2004. Rhizobacteria-mediated induced systemic resistance in cucumber plants against anthracnose disease caused by Colletotrichum orbiculare. Plant Pathol. J. 20: 172-176 https://doi.org/10.5423/PPJ.2004.20.3.172
- King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. and Clin. Med. 44:301-307
- Monne-Loccoz, Y., Naughton, M., Higgins, P, Powell, J., O'Connor, B. and O'Gara, F. 1999. Effect of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113. J. Appl. Microbiol. 86: 108116
- Nielsen, P. and Serensen, J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymixa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 22:183-192 https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
- Roberts, D. P, Yucel, I. and Larkin, R.P. 1998. Genetic approaches for analysis and manipulation of rhizosphere colonization by bacterial biocontrol agents. pp. 415-431. In: Plantmicrobe interactions and biological control, G.J. Boland and L.D. Kuykendall (ed.), Marcel Dekker, Inc, New York
- Schippers, B., Bakker, A. W. and Bakker, P. A. 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25:339-358 https://doi.org/10.1146/annurev.py.25.090187.002011
- Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophore. Analytical Biochemistry 160:47-56 https://doi.org/10.1016/0003-2697(87)90612-9
- Thomashow, L. S. and Weller, D. M. 1996. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. pp. 187-235. In: Plant-microbe interactions, vol. 1. G Stacey and N.T. Keen (ed.), Campman and Hall, New York, N.Y
- Watanabe, K., Miyashita, M. and Harayama, S. 2000. Starvation improves survival of bacteria introduced into activated sludge. Appl. Environ. Microbiol. 66:3905-3910 https://doi.org/10.1128/AEM.66.9.3905-3910.2000
- Wei, G, Kloepper, J. W. and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86:221-224 https://doi.org/10.1094/Phyto-86-221
- Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 26:379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
Cited by
- Identification of native rhizobacteria peculiar to selected food crops in Mmabatho municipality of South Africa vol.27, pp.3-4, 2011, https://doi.org/10.1080/01448765.2011.647798
- Suppression of Citrus Canker by Pretreatment with Rhizobacterial Strains Showing Antibacterial Activity vol.20, pp.2, 2014, https://doi.org/10.5423/RPD.2014.20.2.101
- Suppressive Effect of Bacterial Isolates from Plant Rhizosphere against Late Blight Caused by Phytophthora citrophthora on Citrus Fruits vol.16, pp.1, 2010, https://doi.org/10.5423/RPD.2010.16.1.035
- Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli vol.7, pp.1, 2014, https://doi.org/10.1186/1756-0500-7-221
- Observation of Growth Inhibition of Elsinoe fawcettii on Satsuma Mandarin Leaves Pre-treated with Rhizobacterial Strains by a Scanning Electron Microscope vol.22, pp.1, 2016, https://doi.org/10.5423/RPD.2016.22.1.1
- Phenotypic and genetic diversity of rice seed-associated bacteria and their role in pathogenicity and biological control vol.107, pp.3, 2009, https://doi.org/10.1111/j.1365-2672.2009.04268.x
- A Bacterial Endophyte, Pseudomonas brassicacearum YC5480, Isolated from the Root of Artemisia sp. Producing Antifungal and Phytotoxic Compounds vol.24, pp.4, 2008, https://doi.org/10.5423/PPJ.2008.24.4.461