Plant Growth-Promoting Potential of Endophytic Bacteria Isolated from Roots of Coastal Sand Dune Plants

  • Shin, Dong-Sung (Department of Microbiology, Chungnam National University) ;
  • Park, Myung-Soo (Department of Applied Microbiology, Chungnam National University) ;
  • Jung, Se-Ra (Department of Biomedicine and Biotechnology, Chungnam National University) ;
  • Lee, Myoung-Sook (Food Analysis Research Center, Suwon Women's College) ;
  • Lee, Kang-Hyun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Kyung-Sook (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Seung-Bum (Department of Microbiology, Chungnam National University)
  • Published : 2007.08.30

Abstract

Endophytic bacteria associated with the roots of coastal sand dune plants were isolated, taxonomically characterized, and tested for their plant growth-promoting activities. Ninety-one endophytic bacterial isolates were collected and assigned to 17 different genera of 6 major bacterial phyla based on partial 16S rDNA sequence analyses. Gammaproteobacteria represented the majority of the isolates (65.9%), and members of Pseudomonas constituted 49.5% of the total isolates. When testing for antagonism towards plant pathogenic fungi, 25 strains were antagonistic towards Rhizoctonia solani, 57 strains were antagonistic towards Pythium ultimum, 53 strains were antagonistic towards Fusarium oxysporum, and 41 strains were antagonistic towards Botrytis cinerea. Seven strains were shown to produce indole acetic acid (IAA), 33 to produce siderophores, 23 to produce protease, 37 to produce pectinase, and 38 to produce chitinase. The broadest spectra of activities were observed among the Pseudomonas strains, indicating outstanding plant growth-promoting potential. The isolates from C. kobomugi and M. sibirica also exhibited good plant growth-promoting potential. The correlations among individual plant growth-promoting activities were examined using phi coefficients, and the resulting data indicated that the production of protease, pectinase, chitinase, and siderophores was highly related.

Keywords

References

  1. Bloemberg, G. V. and B. J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350 https://doi.org/10.1016/S1369-5266(00)00183-7
  2. Chernin, L., Z. Ismailov, S. Haran, and I. Chet. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61: 1720-1726
  3. Cho, S.-H., J. H. Han, C. N. Seong, and S. B. Kim. 2006. Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils. J. Microbiol. 44: 600-606
  4. Compant, S., B. Duffy, J. Nowak, C. Clement, and E. A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959 https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  5. Dalton, D. A., S. Kramer, N. Azios, S. Fusaro, E. Cahill, and C. Kennedy. 2004. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol. Ecol. 49: 469-479 https://doi.org/10.1016/j.femsec.2004.04.010
  6. Downing, K. J. and J. A. Thomson. 2000. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can. J. Microbiol. 46: 363-369 https://doi.org/10.1139/cjm-46-4-363
  7. Garrity, G. M. and J. G. Holt. 2001. The road map to the Manual, pp. 119-166. In D. R. Boone, R. W. Castenholz, and G. M. Garrity (eds.), Bergey's Manual of Systematic Bacteriology, Second Edition, Vol. 1. Springer-Verlag, New York, U.S.A
  8. Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
  9. Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffee, and J. W. Kloepper. 1997. Endophytic bacteria in agricultural crops. Can. J. Microbiol. 43: 895-914 https://doi.org/10.1139/m97-131
  10. Huguet, V., J. M. Batzli, J. F. Zimpfer, P. Normand, J. O. Dawson, and M. P. Fernandez. 2001. Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl. Environ. Microbiol. 67: 2116-2122 https://doi.org/10.1128/AEM.67.5.2116-2122.2001
  11. Jeon, J. S., S. S. Lee, H. Y. Kim, T. S. Ahn, and H. G. Song. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41: 271-276
  12. Joo, G. J., Y. M. Kim, J. T. Kim, I. K. Rhee, J. H. Kim, and I. J. Lee. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43: 510-515
  13. Khalid, A., M. Arshad, and Z. A. Aahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473-480 https://doi.org/10.1046/j.1365-2672.2003.02161.x
  14. Kim, J. W., E. H. Kim, Y. S. Kang, O. H. Choi, C. S. Park, and I. G. Hwang. 2006. Molecular characterization of biosynthetic genes of an antifungal compound produced by Pseudomonas fluorescens MC07. J. Microbiol. Biotechnol. 16: 450-456
  15. Kowalchuk, G. A., F. A. de Souza, and J. A. van Veen. 2002. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol. Ecol. 11: 571-581 https://doi.org/10.1046/j.0962-1083.2001.01457.x
  16. Lee, M. S., J. O. Do, M. S. Park, S. Jung, K. H. Lee, K. S. Bae, S. J. Park, and S. B. Kim. 2006. Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie van Leeuwenhoek 90: 19-27 https://doi.org/10.1007/s10482-006-9056-z
  17. Lee, Y. K., Y. S. Jang, H. H. Chang, S. W. Hyung, and H. Y. Chung. 2005. A putative early response of antifungal Bacillus lentimorbus WJ5 against the plant pathogenic fungus, Colletotrichum gloeosporioides, analyzed by a DNA microarray. J. Microbiol. 43: 308-312
  18. Lucy, M., E. Reed, B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25 https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  19. Moore, F. P., T. Barac, B. Borremans, L. Oeyen, J. Vangronsveld, D. van der Lelie, C. D. Campbell, and E. R. Moore. 2006. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterisation of isolates with potential to enhance phytoremediation. Syst. Appl. Microbiol. 29: 539-556 https://doi.org/10.1016/j.syapm.2005.11.012
  20. Opelt, K. and G. Berg. 2004. Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic sea coast. Appl. Environ. Microbiol. 70: 6569-6579 https://doi.org/10.1128/AEM.70.11.6569-6579.2004
  21. Park, M. S., S. R. Jung, M. S. Lee, K. O. Kim, J. O. Do, K. H. Lee, S. B. Kim, and K. S. Bae. 2005. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J. Microbiol. 43: 219-227
  22. Park, M. S., S. R. Jung, K. H. Lee, M. S. Lee, J. O. Do, S. B. Kim, and K. S. Bae. 2006. Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int. J. Syst. Evol. Microbiol. 56: 433-438 https://doi.org/10.1099/ijs.0.63825-0
  23. Reiter, B., U. Pfeifer, H. Schwab, and A. Sessitsch. 2002. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol. 68: 2261-2268 https://doi.org/10.1128/AEM.68.5.2261-2268.2002
  24. Ryu, C. M., J. W. Kim, O. H. Choi, S. Y. Park, S. H. Park, and C. S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  25. Ryu, J. H., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi, K. A. Kim, R. Anandham, J. C. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628
  26. Sawar, M. and R. J. Kremer. 1995. Determination of bacterially derived auxins using a microplate method. Lett. Appl. Microbiol. 20: 282-285 https://doi.org/10.1111/j.1472-765X.1995.tb00446.x
  27. Sehwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  28. Selosse, M. A., E. Baudoin, and P. Vandenkoornhuyse. 2004. Symbiotic microorganisms, a key for ecological success and protection of plants. C.R. Biol. 327: 639-648 https://doi.org/10.1016/j.crvi.2003.12.008
  29. Sessitsch, A., B. Reiter, and G. Berg. 2004. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can. J. Microbiol. 50: 239-249 https://doi.org/10.1139/w03-118
  30. Sturz, A. V., B. R. Christie, B. G. Matheson, W. J. Arsenault, and N. A. Buchanan. 1999. Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol. 48: 360-369 https://doi.org/10.1046/j.1365-3059.1999.00351.x
  31. Sylvia, D. M. and N. J. Burks. 1988. Selection of a vesiculararbuscular mycorrhizal fungus for practical inoculation of Uniola paniculata. Mycologia 80: 565-568 https://doi.org/10.2307/3807859
  32. van Buren, A. M., C. Andre, and C. A. Ishimaru. 1993. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology 83: 1406
  33. Weon, H. Y., B. Y. Kim, S. H. Yoo, S. W. Kwon, Y. H. Cho, S. J. Go, and E. Stackebrandt. 2006. Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int. J. Syst. Evol. Microbiol. 56: 1501-1504 https://doi.org/10.1099/ijs.0.64179-0
  34. Young, C. C., P. Kämpfer, F. T. Shen, W. A. Lai, and A. B. Arun. 2005. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int. J. Syst. Evol. Microbiol. 55: 423-426 https://doi.org/10.1099/ijs.0.63331-0