Annotation and Expression Profile Analysis of cDNAs from the Antarctic Diatom Chaetoceros neogracile

  • Jung, Gyeong-Seo (Department of Life Science, College of Natural Science, Hanyang University) ;
  • Lee, Choul-Gyun (Department of Biotechnology, Institute of Industrial Biotechnology, Inha University) ;
  • Kang, Sung-Ho (Polar Environmental Research Division, Korea Ocean Polar Research Institute (KOPRI)) ;
  • Jin, Eon-Seon (Department of Life Science, College of Natural Science, Hanyang University)
  • Published : 2007.08.30

Abstract

To better understand the gene expression of the cold-adapted polar diatom, we conducted a survey of the Chaetoceros neogracile transcriptome by cDNA sequencing and expression of interested cDNAs from the Antarctic diatom. A non-normalized cDNA library was constructed from the C. neogracile, and a total of 2,500 cDNAs were sequenced to generate 1,881 high-quality expressed sequence tags (ESTs) (accession numbers EL620615-EL622495). Based on their clustering, we identified 154 unique clusters comprising 342 ESTs. The remaining 1,540 ESTs did not cluster. The number of unique genes identified in the data set is thus estimated to be 1,694. Taking advantage of various tools and databases, putative functions were assigned to 939 (55.4%) of these genes. Of the remaining 540 (31.9%) unknown sequences, 215 (12.7%) appeared to be C. neogracile-specific since they lacked any significant sequence similarity to any sequence available in the public databases. C. neogracile consisted of a relatively high percentage of genes involved in metabolism, genetic information processing, cellular processes, defense or stress resistance, photosynthesis, structure, and signal transduction. From the ESTs, the expression of these putative C. neogracile genes was investigated: fucoxanthin chlorophyll (chl) a,c-binding protein (FCP), ascorbate peroxidase (ASP), and heat-shock protein 90 (HSP90). The abundance of ASP and HSP90 changed substantially in response to different culture conditions, indicating the possible regulation of these genes in C. neogracile.

Keywords

References

  1. Ali, A., S. Bharadwaj, R. O'Carroll, and N. Ovsenek. 1998. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus ocytes. Mol. Cell. Biol. 18: 4949-4960 https://doi.org/10.1128/MCB.18.9.4949
  2. Apt, K. E., S. K. Clendennen, D. A. Powers, and A. R. Grossman. 1995. The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol. Gen. Genet. 246: 455-464 https://doi.org/10.1007/BF00290449
  3. Apt, K., D. Bhaya, and A. R. Grossman. 1994. Characterization of genes encoding the light-harvesting proteins in diatoms: Biogenesis of the fucoxanthin chlorophyll a/c protein complex. J. Appl. Phycol. 6: 225-230 https://doi.org/10.1007/BF02186075
  4. Armbrust, E. V., J. A. Berges, C. Bowler, B. R. Green, D. Martinez, N. H. Putnam, S. Zhou, A. E. Allen, K. E. Apt, M. Bechner, M. A. Brzezinski, B. K. Chaal, A. Chiovitti, A. K. Davis, M. S. Demarest, J. C. Detter, T. Glavina, D. Goodstein, M. Z. Hadi, U. Hellsten, M. Hildebrand, B. D. Jenkins, J. Jurka, V. V. Kapitonov, N. Kröger, W. W. Lau, T. W. Lane, F. W. Larimer, J. C. Lippmeier, S. Lucas, M. Medina, A. Montsant, M. Obornik, M. S. Parker, B. Palenik, G. J. Pazour, P. M. Richardson, T. A. Rynearson, M. A. Saito, D. C. Schwartz, K. Thamatrakoln, K. Valentin, A. Vardi, F. P. Wilkerson, and D. S. Rokhsar. 2003. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 79-86 https://doi.org/10.1126/science.1101156
  5. Armbrust, E. V., J. B. Berges, C. Bowler, B. R. Green, D. Martinez, N. H. Putnam, S. Zhou, A. E. Allen, K. E. Apt, M. Bechner, et al. 2004. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 79-86 https://doi.org/10.1126/science.1101156
  6. Aro, E.-M., I. Virgin, and B. Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143: 113-134 https://doi.org/10.1016/0005-2728(93)90134-2
  7. Bailey, S., E. Thompson, P. J. Nixon, P. Horton, C. W. Mullineaux, C. Robinson, and N. H. Mann. 2002. A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J. Biol. Chem. 277: 2006-2011 https://doi.org/10.1074/jbc.M105878200
  8. Barber, J. and B. Andersson. 1992. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 17: 61-66 https://doi.org/10.1016/0968-0004(92)90503-2
  9. Bhaya, D. and A. R. Grossman. 1993. Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res. 21: 4458-4466 https://doi.org/10.1093/nar/21.19.4458
  10. Buchner, J. 1999. Hsp90 & Co. - a holding for folding. Trends Biochem. Sci. 24: 136-141 https://doi.org/10.1016/S0968-0004(99)01373-0
  11. Caron, L., D. Douady, M. Quinet-Szely, S. de Goer, and C. Berkaloff. 1996. Gene structure of a chlorophyll a/c-binding protein from a brown alga: Presence of an intron and phylogenetic implications. J. Mol. Evol. 43: 270-280 https://doi.org/10.1007/BF02338835
  12. Ceron, G., F. Garcia CamaCho, A. Sanchez Miron, J. M. Fernandez Sevilla, Y. Chisti, and E. M. Grima. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol. 16: 689-694
  13. Csermelyl, P. and S. C. Lakhotia. 1998. Molecular biology of stress responses in India. Cell Stress Chaperones 3: 1-5 https://doi.org/10.1379/1466-1268(1998)003<0001:MBOSRI>2.3.CO;2
  14. Cummins, I., D. J. Cole, and R. Edwards. 1999. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 18: 285-292 https://doi.org/10.1046/j.1365-313X.1999.00452.x
  15. Dixon, D. P., A. Lapthorn, and R. Edwards. 2002. Plant glutathione transferases. Protein family review. Genome Biol. 3: reviews 3004.1-3004.10
  16. Durnford, D. G., R. Aebersold, and B. R. Green. 1996. The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: Structural and evolutionary relationships to other light harvesting antennae. Mol. Gen. Genet. 253: 377-386 https://doi.org/10.1007/s004380050334
  17. Eom, H. S., S. H. Park, C. G. Lee, and E. S. Jin. 2005. Gene expression profiling of eukaryotic microalga, Haematococcus pluvialis. J. Microbiol. Biotechnol. 15: 1060-1066
  18. Eppard, M. and E. Rhiel. 1998. The genes encoding lightharvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol. Gen. Genet. 260: 335-345 https://doi.org/10.1007/s004380050902
  19. Falciatore, A. and C. Bowler. 2002. Revealing the molecular secrets of marine diatoms. Annu. Rev. Plant Biol. 53: 109-130 https://doi.org/10.1146/annurev.arplant.53.091701.153921
  20. Grossman, A. R., A. Manodori, and D. Snyder. 1990. Lightharvesting proteins of diatoms: Their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Mol. Gen. Genet. 224: 91-100
  21. Jakob, U., I. Meyer, H. Bügl, S. André, J. C. Bardwell, and J. Buchner. 1995. Structural organization of prokaryotic and eukaryotic Hsp90. Influence of divalent cations on structure and function. J. Biol. Chem. 270: 14412-14419 https://doi.org/10.1074/jbc.270.24.14412
  22. Kampranis, S. C., R. Damianova, M. Atallah, G. Toby, G. Kondi, P. N. Tsichlis, and A. M. Makris. 2000. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275: 29207-29216 https://doi.org/10.1074/jbc.M002359200
  23. Kroth-Pancic, P. 1995. Nucleotide sequence of two cDNAs encoding fucoxanthin chlorophyll a/c proteins in the diatom Odontella sinensis. Plant Mol. Biol. 27: 825-828 https://doi.org/10.1007/BF00020236
  24. Kyle, D. J., I. Ohad, and C. J. Arntzen. 1984. Membrane protein damage and repair: Selective loss of a quinoneprotein function in chloroplast membranes. Proc. Natl. Acad. Sci. USA 81: 4070-4074
  25. Langer, T. 2000. AAA proteases: Cellular machines for degrading membrane proteins. Trends Biochem. Sci. 25: 247-251 https://doi.org/10.1016/S0968-0004(99)01541-8
  26. Lindahl, M., S. Tabak, L. Cseke, E. Pichersky, B. Andersson, and Z. Adam. 1996. Identification, characterization, and molecular cloning of a homologue of the bacterial FtsH protease in chloroplasts of higher plants. J. Biol. Chem. 271: 29329-29334 https://doi.org/10.1074/jbc.271.46.29329
  27. Maheswari, U., A. Montsant, J. Goll, S. Krishnasamy, K. R. Rajyashri, V. M. Patell, and C. Bowler. 2005. The Diatom EST Database. Nucleic Acids Res. 33: 344-347 https://doi.org/10.1093/nar/gki121
  28. Marrs, K. A. 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127-158 https://doi.org/10.1146/annurev.arplant.47.1.127
  29. Mauch, F. and R. Dudler. 1993. Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol. 102: 1193-1201 https://doi.org/10.1104/pp.102.4.1193
  30. Mock, T. and K. Valentin. 2004. Photosynthesis and cold acclimation: Molecular evidence from a polar diatom. J. Phycol. 40: 732-741 https://doi.org/10.1111/j.1529-8817.2004.03224.x
  31. Mock, T. and N. Hoch. 2005. Long-term temperature acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosynth. Res. 85: 307-317 https://doi.org/10.1007/s11120-005-5668-9
  32. Mock, T., A. Krell, G. Glöckner, Ü. Kolukisaoglu, and K. Valentin. 2005. Analysis of expressed sequence Tag (ESTs) from the polar diatom Fracilariopsis cylindrus. J. Phycol. 42: 78-85 https://doi.org/10.1111/j.1529-8817.2006.00164.x
  33. Morgan-Kiss, R. M., J. C. Priscu, T. Pocock, L. Gudynaite- Savitch, and N. P. Huner. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70: 222-252 https://doi.org/10.1128/MMBR.70.1.222-252.2006
  34. Nixon, P. J., M. Baker, M. Boehm, R. de Vries, and J. Komenda. 2005. FtsH-mediated repair of the photosystem II complex in response to light stress. J. Exp. Bot. 56: 357-363 https://doi.org/10.1093/jxb/eri021
  35. Noctor, G., L. Gomez, H. Vanacker, and C. H. Foyer. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53: 1283-1304 https://doi.org/10.1093/jexbot/53.372.1283
  36. Ohad, I., D. J. Kyle, and C. J. Arntzen. 1984. Membrane protein damage and repair: Removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J. Cell Biol. 270: 14919-14927
  37. Park, S. H., J. E. W. Polle, A. Melis, T. K. Lee, and E. S. Jin. 2006. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. Marine Biotechnol. 8: 120-128 https://doi.org/10.1007/s10126-005-5030-4
  38. Passaquet, C. and C. Lichtlé. 1995. Molecular study of a light-harvesting apoprotein of Giraudyopsis stellifer (Chrysophyceae). Plant Mol. Biol. 29: 135-148 https://doi.org/10.1007/BF00019125
  39. Pratt, W. B. and D. O. Toft. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood). 228: 111-133 https://doi.org/10.1177/153537020322800201
  40. Richter, K. and J. Buchner. 2001. Hsp90: Chaperoning signal transduction. J. Cell. Physiol. 188: 281-290 https://doi.org/10.1002/jcp.1131
  41. Roxas, V. P., R. K. Smith, E. R. Allen, and R. D. Allen. 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15: 988-991 https://doi.org/10.1038/nbt1097-988
  42. Sakamoto, W., A. Zaltsman, Z. Adam, and Y. Takahashi. 2003. Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15: 2843-2855 https://doi.org/10.1105/tpc.017319
  43. Sakamoto, W., T. Tamura, Y. Hanba-Tomita, and M. Murat. 2002. The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7: 769-780 https://doi.org/10.1046/j.1365-2443.2002.00558.x
  44. Scala, S., N. Carels, A. Falciatore, M. L. Chiusano, and C. Bowler. 2002. Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol. 129: 993-1002 https://doi.org/10.1104/pp.010713
  45. Wegele, H., L. Muller, and J. Buchner. 2004. Hsp70 and Hsp90 - a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151: 1-44 https://doi.org/10.1007/s10254-003-0021-1
  46. Willmund, F. and M. Schroda. 2005. Heat shock protein 90C is a bona fide Hsp90 that interacts with plastidic HSP70B in Chlamydomonas reinhardtii. Plant Physiol. 138: 2310-2322 https://doi.org/10.1104/pp.105.063578
  47. Yamamoto, Y. 2001. Quality control of photosystem II. Plant Cell Physiol. 42: 121-128 https://doi.org/10.1093/pcp/pce022
  48. Yoshioka, M., S. Uchida, H. Mori, K. Komayama, S. Ohira, N. Morita, T. Nakanishi, and Y. Yamamoto. 2006. Quality control of photosystem II. Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J. Biol. Chem. 281: 21660-21669 https://doi.org/10.1074/jbc.M602896200