DOI QR코드

DOI QR Code

Experiment on Settling Velocity of Suspended Mineral Particles

부유된 광물성 입자의 침강 속도에 관한 실험

  • Kim, Jong-Woo (Dept. of Civil Engrg., Kyungpook National University)
  • 김종우 (경북대학교 공과대학 건설공학부)
  • Published : 2007.09.30

Abstract

This study was to investigate the settling velocity which is an important factor for the prediction of cohesive deposition under the various densities of particle and dissolved ion addition$(Na^+,\;Cl^-,\;OH^-,\;H^+)$ in rivers, ports, reservoirs and lakes. Settling velocity of suspended fine particles in still water was measured with a pressure sensor (maximum 10 mbar). At the initial concentration of 20g/l of alumina and quartz the average settling velocities were high due to the aggregation behaviour of particles. At this point it was 0.185 mm/s (alumina) and 0.022 mm/s (quartz). Above this initial concentration it was on the decrease owing to the hindered settling. The higher the salinity is, the faster the settling velocity of alumina and quartz is. Furthermore, in an acid condition the average settling velocity of alumina was on the decrease. In an alkaline water, which causes strong flocculation, the average settling velocity of alumina it was observed on the increase. However, in an alkaline medium the low average settling velocity of quartz powder was measured.

본 연구는 점착성 퇴적물 예측에 가장 중요한 인자인 침강속도를 강 항만 저수지 그리고 호수에 녹아있는 이온 $(Na^+,\;Cl^-,\;OH^-,\;H^+)$의 첨가 및 밀도의 변화 아래 실시되었다. 정수 중에 부유된 미립자(alumina와 quartz)의 침강 속도는 압력센서(최대 10 mbar)로 측정되었다. 초기 농도 20 g/l에서 alumina와 quartz의 평균 침강속도는 미립자의 응집현상 때문에 최고 값을 보였으며, 이때 각각 최대 평균 침강속도는 0.185 mm/s(alumina)와 0.022 mm/s(quartz)이다. 그 후 증가된 초기농도일 경우 간섭침강 때문에 침강속도는 감소하였다. 또한 증가된 염분에서 두 미립자의 평균속도는 증가하였다. 더구나 alumina의 평균 침강속도는 산성에서 감소하다가 알칼리성에서는 강한 응집현상 때문에 높게 측정되었다. 그러나 quartz의 평균 침강속도는 알칼리성에서 낮은 값을 보였다.

Keywords

References

  1. Johne, R. (1966). Einfluss der Konzentration einer monodispersen Suspension mlf die Sinkgeschwindigkeit ihrer Teilchen. Fortschr.-Ber. VDI-Z. R 3.11, 1/89 (in German)
  2. Lagaly, G., Schulz, O., and Zirnehl, R. (1997). Dispersionen und Emulsionen. ISBN 3-7985-10873, Steinkopff Verlag Darmstadt (in German)
  3. Mehta, A.J. (1986). 'Characterization of cohesive sediment properties and transport processes in estuaries.' In Estuarine Cohesiue Sediment Dynamics. A.J. Mehta(ed) Springer Verlag, pp. 290-325
  4. Migniot, C. (1968). A study of the physical properties of various forms . of very fine sediments and their behiciour under hydrodynamic action. La Houille Blanche, No.7, 591-620
  5. Puls W., Kuhl H., and Heymann K. (1988). 'Settling velocity of mud floes: results of field measurements in the Elbe and the Weser Estuary.' In Physical Processes in Estuaries. J. Dronkers and W. van Leussen (Eds.) Springer- Verlag, Berlin: 404-426
  6. Reinshagen, J., Oberacker, R., and Hoffmann, M. J. (2002). Korrelation zwischen Teilchenwechselwirkung und Grunkorpereigenschaften nassgeformter Keramiken. Arbeitsbericht des DFG Projektes (in German)
  7. Scheffer, F., and Schachtschabel, P. (1984). Lehrbuch der Bodenkunde. Ferdinand Enke, Stuttgart (in German)
  8. Stumm, W., and Morgan, J. J. (1981). Aquatic Chemistry. 2nd edition, John Wiley, Interscience, New York
  9. Van Rijn, L. C. (1993). Principles of fluid flow and surface waves in rivers, estuaries seas and oceans. Delft Hydraulics, The Netherlands
  10. Whitehouse, U. G., Jeffrey L. M, and Debbrecht J. D. (1960). 'Differential settling tendencies of clay minerals in saline waters.' In Clays and Clay Minerals, 7th, A. Swineford (ED,) Washington DC, 195. Pergamon Press, New York: 1-79

Cited by

  1. Experimental Observation of the Settling Velocity of Coarse Particles and Comparative Analysis vol.16, pp.10, 2015, https://doi.org/10.14481/jkges.2015.16.10.33