Penetration Efficiency of Charged Particles in a Cylindrical Tube Connection with Electrical Voltage Difference

  • Song, Dong-Keun (School of Civil and Environmental Engineering, Kumoh National Institute of Technology) ;
  • Kim, Tae-Oh (School of Civil and Environmental Engineering, Kumoh National Institute of Technology)
  • Published : 2007.06.30

Abstract

A cylindrical tube connection that has a voltage difference and is separated electrically by an insulator was modelled. The penetration efficiencies of charged particles passing through the connector tube were investigated. Typically, as the particle size decreases and the applied voltage difference increases, the penetration efficiency decreases. To assess the effect of the electrode geometry, various lengths of electric insulator and aerosol flow rate with a fixed tube length and tube diameter were used when calculating penetration efficiencies. The comparison of penetration efficiencies for various electrode geometry setups suggests that the penetration efficiency can be described as a function of the product of applied voltage and electrical mobility of charged particles. The diffusion loss from this and previous studies are compared. Further, an explicit form for penetration efficiency is provided as a function of a new non-dimensional parameter, $Es(=Z_pV/U_{avg}W);\;P_{es}=0.2{\cdot}{\exp}(-Es/0.6342)+0.8{\cdot}{\exp}(-Es/4.7914)$.

Keywords

References

  1. Allen, M.D. and O.G. Raabe (1982) Re-Evaluation of Millikan's Oil Drop Data for the Motion of Small Particles in Air. J. Aerosol Sci., 13, 537-547 https://doi.org/10.1016/0021-8502(82)90019-2
  2. Bae, G.N., M.C. Kim, D.Y. Lim, K.C. Moon, and N.J. Baik (2003) Characteristics of urban aerosol number size distribution in Seoul during the winter season of 2001. J. KOSAE, 19(2), 167-177
  3. Chen, D.-R., D.Y.H. Pui, D. Hummes, H. Fissan, F.R. Quant, and G.J. Sem(1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aerosol Sci., 29(5/6), 497-509 https://doi.org/10.1016/S0021-8502(97)10018-0
  4. Collins, D.R., D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (2004) The scanning DMA transfer function. Aerosol Sci. Technol., 38, 833-850 https://doi.org/10.1080/027868290503082
  5. Donaldson, K., X.Y. Liu, and W. MacNee (1998) Ultrafine (nanometer) particle mediated lung injury. J. Aerosol Sci., 29, 553-560 https://doi.org/10.1016/S0021-8502(97)00464-3
  6. Ermak, D.L. and H. Buckholz (1980) Numerical integration of the Langevin equation: Monte Carlo simulation. J. Comp. Phys., 35, 169-182 https://doi.org/10.1016/0021-9991(80)90084-4
  7. Friedlander, S.K. (1977) Smoke, Dust, and Haze. Wiley, New York, p. 77
  8. Jaques, P.A. and C.S. Kim(2000) Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhalation Toxicology, 12, 715-731 https://doi.org/10.1080/08958370050085156
  9. Keskinen, M., K. Pietarinen, and M. Lehtimaki (1992) Electrical low pressure impactor. J. Aerosol Sci., 4, 353-360
  10. Kim, Y.M. and K.H Ahn (2005) Monitoring of airborne fine particle using SMPS in Ansan area. J. KOSAE, 21(3), 295-301
  11. Kittelson, D.B. (1998) Engines and nanoparticles. J. Aerosol Sci., 29, 575-585 https://doi.org/10.1016/S0021-8502(97)10037-4
  12. Kousaka, Y., K. Okuyama, M. Adachi, and T. Mimura (1986) Effect of Brownian diffusion on electrical classification of ultrafine aerosol particles in differential mobility analyzer. J. Chem. Eng. Jpn., 19(5), 401-407 https://doi.org/10.1252/jcej.19.401
  13. Lee, J.W., H.S. Kim, and Y.I. Jeong (2006) Effects of particle measuring conditions on diesel nanoparticles distribution. J. KOSAE, 22(5), 653-660
  14. Myojo, T., S. Ikawa, H. Sakae, and N. Koyama (2001) A new long DMA and its performance for sizemeasurement of 1 ${\mu}m$ Polystyrene latex particles. J. Jpn. Air Cleaning Assoc., 39, 34-41
  15. Oberdorster, G., J. Ferin, R. Gelein, S. Soderholm, and J. Finkelstein (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environmental Health Perspectives, 97, 193-199 https://doi.org/10.2307/3431353
  16. Oberdorster, G., R. Gelein, J. Ferin, and B. Weiss (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhalation Toxicology, 71, 111-124
  17. Park, D.S., T.O. Kim, and D.S. Kim (2003) An analysis of characteristics of particulate matter exhausted from diesel locomotive engines. J. KOSAE, 19(2), 133-143
  18. Petaja, T., G. Mordas, H. Manninen, P.P. Aalto, K. Hameri, and M. Kulmala (2006) Detection efficiency of a water-based TSI condensation particle counter 3785. Aerosol Sci. Technol., 40(12), 1090-1097 https://doi.org/10.1080/02786820600979139
  19. Schiller, C.F., J. Gebhart, J. Heder, G. Rudolf, and W. Stahlhofen (1986) Factors influencing total deposition of ultrafine aerosol particles in the human respiratory tract. J. Aerosol Sci., 17, 328-332 https://doi.org/10.1016/0021-8502(86)90098-4
  20. Shimada, M., H.M. Lee, C.S. Kim, H. Koyama, T. Myojo, and K. Okuyama (2005) Development of an LDMA-FCE System for the Measurement of Submicron Aerosol Particles. J. Chem. Eng. Jpn., 38(1), 34-44 https://doi.org/10.1252/jcej.38.34
  21. Song, D.K., H. Chang, S.S. Kim, and K. Okuyama (2005) Numerical evaluation of the transfer function of a low pressure DMA by using the Langevin dynamic equation. Aerosol Sci. Technol., 39(8), 701-712 https://doi.org/10.1080/02786820500182396
  22. Song, D.K. and S. Dhaniyala (2007) Change in distributions of particle positions by Brownian diffusion in a non-uniform external field. J. Aerosol Sci., 38(4), 444-454 https://doi.org/10.1016/j.jaerosci.2007.01.006
  23. Song, D.K., H.M. Lee, H. Chang, S.S. Kim, M. Shimada, and K. Okuyama (2006) Performance evaluation of long differential mobility analyzer (LDMA) in measurements of nanoparticles. J. Aerosol Sci., 37(5), 598-615 https://doi.org/10.1016/j.jaerosci.2005.06.003
  24. Tu, K.W. and E.O. Knutson (1984) Total deposition of ultrafine hydrophobic and hygroscopic aerosols in the human respiratory system. Aerosol Sci. Technol., 3, 453-465 https://doi.org/10.1080/02786828408959032
  25. Vincent, J.H. and C.F. Clement (2000) Ultrafine particles in workplace atmospheres. Phil. Trans. R. Soc. Lond. A, 358, 2673-2682 https://doi.org/10.1098/rsta.2000.0676
  26. Wang, J., R.C. Flagan, and J.H. Seinfeld (2002) Diffusional losses in particle sampling systems containing bends and elbows. J. Aerosol Sci., 33, 843-857 https://doi.org/10.1016/S0021-8502(02)00042-3
  27. Wichmann, H.-E. and A. Peters (2000) Epidemiological evidence of the effects of ultrafine particle exposure. Phil. Trans. R. Soc. Lond. A, 358, 2751-2769 https://doi.org/10.1098/rsta.2000.0682
  28. Wilson Jr, F.J., F.C. Hiller, J.D. Wilson, and R.C. Bone (1985) Quantitative deposition of ultrafine stable particles in the human respiratory tract. J. Appl. Physiol., 58, 223-229 https://doi.org/10.1063/1.335716
  29. Woo, K.S., D.-R. Chen, D.Y.H. Pui, and P.H. McMurry (2001) Measurement of Atlanta aerosol size distributions: Observations of ultrafine particle events. Aerosol Sci. Technol., 34, 75-87 https://doi.org/10.1080/02786820120056
  30. Zhang, S.-H. and R.C. Flagan (1996) Resolution of the radial differential mobility analyzer for ultrafine particles. J. Aerosol Sci., 27(8), 1179-1200 https://doi.org/10.1016/0021-8502(96)00036-5