DOI QR코드

DOI QR Code

Algorithm to prevent Block Discontinuity by Overlapped Block and Manning Window

중첩 기반 연산과 Hanning Window를 이용한 블록 불연속 노이즈 방지 알고리즘

  • Published : 2007.09.29

Abstract

In this paper, we propose an Overlapped Block and an Hanning Window to prevent a Block Discontinuity when we use an algorithm to eliminate ringing artifact which is based on a block structure. The algorithm to eliminate ringing artifact operates with a block structure and 24-RGB data and is based on a modified K-means algorithm. The proposed overlapped block method is piled up one on another per an half of the size of unit-block when an input image is split into several unit-blocks. Therefore, we define a data unit as the unit-block of the block size, $16{\times}16$ pixels. We reconstruct the processed data units into the original form of input image by using an isotropic form of Hanning Window. Finally, in order to evaluate the performance of the abovementioned algorithms, we compare three image, an input image with ringing artifact, an image result obtained by conventional method (non-overlapped), and an image result obtained the proposed method.

본 논문은 블록 처리 방법을 기반으로 하는 링잉 노이즈 감소 알고리즘을 사용할 때, 블록 불연속 노이즈(Block Discontinuty)를 방지 할 수 있는 중첩 기 반(Overlapped Block) 연산과 Hanning Window에 관련된 것이다. 링잉 노이즈 감소 알고리즘은, 24bit RGB와 블록 기반 연산으로 하며, 수정된 K-means 알고리즘을 바탕으로 한다. 그래서 제안한 중첩 기반 연산은 입력 영상을 여러 단위 블록으로 조각낼 때, 단위 블록의 크기의 반을 중첩 시켜 선택하는 방법이다. $16{\times}16$ 픽셀 크기의 데이터 블록을 데이터 유닛(Data Unit)이 라고 정의하였다. 그 후 처리된 데이터 유닛들을 등방성 분포를 지닌 Hanning Window를 사용하여 중첩된 데이터에서 원 이미지 형태로 복원하였다. 최종적으로 언급된 알고리즘의 성능을 확인하기 위해서 링잉 노이즈를 가진 이미지를 기존 방법(비 중첩 기반 연산)과 제안한 알고리즘으로 처리함으로써 각각의 결과를 비교하였다.

Keywords

References

  1. K.Jack, Video Demystified: A Handbook for the Digital Engineer, HighTextPub., 1996
  2. H.Kong, A.Vetro, and H.Sun, 'Edge map guided adaptive post-filter for blocking and ringing artifacts removal,' ISCAS 2004, Vol, 3, pp. May 2004
  3. R.C.Gonzalez, Digital image processing 2nd edition, 2002
  4. J.H Kim, Design of Smart Zoom System with Boost-up Filter and ADEN Algorithm, Ph.D. Thesis, Dong-A University, Busan, Korea, Feb. 2006
  5. B.Maliatski and O.Yadid-Pecht, 'Hardware-driven adaptive K-means clustering for real-time video imaging,' IEEE Trans. on Circuits and Systems for Video Technology, Vol. 15, No.1, pp. 164-166, Jan. 2005 https://doi.org/10.1109/TCSVT.2004.839977
  6. D. Charalampidis, 'A modified K-means algorithm for circular invariant clustering,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 27, No. 12, pp. 1856-1865, Dec. 2005 https://doi.org/10.1109/TPAMI.2005.230
  7. W.Jang, J.Kim, W.Choi, B.Kwak, and B.Kang, 'Ringing Artifacts Removal System for Mobile Application Camera by Modified K-means Algorithm,' Submitted to 2007 Advanced Video and Signal based Surveillance, Mar. 2007
  8. A.V. Oppenheim and R.W. Schafer, Diserete- Time Signal Processing, Prentice Hall, New Jersey, 1998
  9. J.Kim, W.Jang, B.Kwak, S.Kim, and B.Kang, 'A New Image-scaling Algorithm Eradicating Blurring and Ringing to Apply to Camera Phones,' International Conference on Consumer Electronics, p.5.4-1, Jan. 2007