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Abstract

We investigate the properties of fuzzy relations and meet preserving maps on strictly two-sided, commutative quantales.

Moreover, we study the relations between them.
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1. Introduction

Quantales were introduced by Mulvey [9] as the non-
commutative generalization of the lattice of open sets in
topological spaces. Recently, quantales have arisen in an
analysis of the semantics of linear logic systems developed
by Girard [1], which supports part of foundation of theo-
retic computer science. Hohle et al. [4,5] introduced the
notion of L-fuzzy relation on a complete quasi-monoidal
lattice ( including GL-monoid [2] ) L instead of a com-
pletely distributive lattice or the unit interval[8,11]. The
notion of L-fuzzy relation facilitated to study fuzzy equiva-
lence relations, fuzzy rough sets, L-fuzzy topological struc-
tures [8,11].

In this paper, we investigate the properties of fuzzy re-
lations and meet preserving maps on a strictly two-sided,
commutative quantale lattice L. Moreover, we study the re-
lations between meet preserving maps and fuzzy relations.

2. Preliminaries

Definition 2.1. [6,9-11] A triple (L,<,®) is called a
strictly two-sided, commutative quantale (stsc-quantale, for
short) iff it satisfies the following properties:

(L) L= (L,<,V,A,1,0) is a completely distributive
lattice where 1 is the universal upper bound and O is the
universal lower bound;

(L2) (L, ®) is a commutative semigroup;

L3)a=a®1,foreacha € L;

(L4) & is distributive over arbitrary joins, i.e.,

(V@) ob=\/(a:0b).
i€l iel
Remark 2.2, [4,5,7-12](1) A completely distributive lat-

tice (ref. [11]) is a stsc-quantale. In particular, the unit
interval ([0, 1], <,V, A, 0,1) is a stsc-quantale.
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(2) The unit interval with a continuous t-norm ¢,
([0,1], <, ), is a stsc-quantale.

(3) Let (L, <, ®) be a stsc-quantale. Foreach z,y € L,
we define

:t—>y:\/{z€L|x®z§y}.
Then it satisfies Galois correspondence, that is,
zoy) <zezx<(y—2).

In this paper, we always assume that (L, <, ©,* ) is a
stsc-quantale with strong negation * where ¢* = a — 0.
We denote 1, a characteristic function of {z}.

Let X be a nonempty set. All algebraic operations on L
can be extended pointwisely to the set LX as follows: for
all z GX,/\,MELX anda € L,

(DA < piff AM(z) < p(z);

@) (Ao p)(z) = M=) © p(=);

A 1x(x)=1, a®lx(z)=aandly(z)=0;

@) (@ = N(z) = a — Az) and (A — a)(z) =
Az) — a;

B3) (@0 AN)(z) = a© A=).

Lemma 2.3. [6,12] For each z,y, 2, z;,y; € L, we have
the following properties.

(DIfy <z, then(zQy) < (z @z} -y<z—2
andz -z <y—x

QzoyLxzAhy<zVy.

Bz — (/\iel" Yvi) = /\ier(x — i)

@ (Vier i) = vy = Nier (@i = v).

Sz — (\/iEF i) > \/ier(m — Yi)

(6) (/\iel‘ x) =y > \/ieF(xi —Y).

N /\ieF Y = (Viel“ yi)* and \/ier Y = (/\iel‘ yi)*.

®(zoy)—mz=z—(y—2)=y— (v —2)

Oroy=(z—y)"

(1)yz<(z—y) —y.

(IMMzx<Ly—-ziffy<z — 2.
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Definition 2.4. [6,8,11]Let¢p: M — Nandyp: N - M
be order-preserving maps between partially ordered sets
M,N. ¢is left adjoint of ¢, ¢ 4 1, iff (a) < b= a <
¥ (b). Equivalently, ¢ 4 v iff idps < o and gorp < idy.

Definition 2.5. [7] A map v : LX — LY is a
meet-preserving map if Y(A,cr M) = Ajer ®(Xi), for
{Nitier € LX. We denote L(X,Y) a family of meet-
preserving maps.

Theorem 2.6. [7] For ©,%; € L(X,Y) and v €
L(Y, Z), we define, forall A\ € LX p e LY,

=\/{re X p(\) >},
P10 2(A) = ¥1(2(N)).

Then the following properties hold:

(D~ (p) = AN € LX | 4()) > p} such that ¢~ is
a left adjoint of 1 with p < Yoy (p) and Y~ ogp(A) < A

@ =N p) = (b~ (p*))* and Y1 € L(Y, X) such
that

YA) = pe A2y (p) e v p

G ()t =1

@) If oy < 1y, then op7t < 95t

O If ¢ € LY, Z), then p o2p € L(X,Z) and
(po) t=9y~logp™! € L(Z,X).

6) If ¥(1, — A(x)) = p, for all x € X, then
¢(A) = /\zGX Pz-

NP1y — o) =
P = Pa.

a(l, — o) forall z € X, then

3. Fuzzy relations and Meet preserving maps
In this section, we investigate the relationships between
fuzzy relations and meet preserving maps.

Theorem 3.1. For each v € LX*Y, we define mappings
@y (u): LY — LY and ®5(u) : LY — LX as follows:

(N ) = N (ulz,y) = Az)),
zeX

Oy (w)(p)(z) = N\ (u(z,y) — p(y))-
yeYy

Then we have the following properties:

(1) ®1(u) € L(X,Y) and ®o(u) € L(Y, X). For each
i = 1,2, ®;(u) has a left adjoint mapping ®;~ (u), respec-
tively, defined by

o1 (w)(p)(2) = \/ (u(z,y) © p(y)),

yeY
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ey (W) =\ (ulz,y) © A@)).

z€X

(2)Foreachz € X,a € Landy €Y,
(I)l(u’)(lx - a)(y) = u(:z:,y) - Q,

Po(u)(1ly — a)(z) = u(z,y) — o,
(3)Foreach A€ LX andp e LY,

= A\ 21(u)(1. = M=) ()
xeX
= N\ ®2u)(1y = p(y))(z)-
yeY

(4) For each u € LX*Y and each i = 1,2, we define

B1(u)"Hp) = (7 (u)(p))",
Do(u)THA) = (B2 (w)(A)*.
Then @1 (u) ™! = ®5(u) and 5 (u)~ = 4 (u).
Proof. (1) ®1(u) € L(X,Y) from:
P4 (u)(Njer M) ()

= /\zEX(u’(xﬂ y) -
(by Lemma 2.3(3))

= Nier (Asex(ul@,y) = Xi(@))
= Nier B1()(N)(v).

Since @1(u) € L(X,Y), by Theorem 2.6(1), we obtain
&1 (u) as follows:

Nier i())

It follows

Dy (u) (@77 (u)(p))(y)
= Neextu(z,y) — 7 (u)(p)(2)}

— Nvex {u@y) = V,yey (o) © ulz,y))}
(by Lemma 2.3(5))
2 Noex Vyey{ulz,y) — (p(y) © w(z,y))}
> p(y)-
7 (u)(P1(u) (M) ()

Vyev{w(@,y) © 21(w)(M)(y)}
= Vyey {u(@,9) © Apex(u(z,y) — A=)}
< Ver{u(m)y) ©] (u(az,y) - )\(.’E )}
< Az).

Hence ®1(u) has a left adjoint mapping @7 (u).



(2) It follows from:
@1 (u)(le — a)(y)

Other case is similarly proved.
(3) Since ®3(u) € L(X,Y)and A = A x(1, —
A(z)), we have

01 (w)N() = P1(u)(Agex (le = A(2)))(y)
= Noex P1(w)(ls — A())(y)-

Other case is similarly proved.

@

&1 ()~ (p)(2) U (w)(p )( ))

= (21
- (Vs e )

y Lemma 2 3(7 9))
= /\yey( u(z,y) — p(y))
= O3(u)(p)().
O
Theorem 3.2. We define mappings ®;, : L**Y —

L(X,Y)and ®; : LX*Y — L(Y, X) as follows:

e1(w)(Ny) = N (ula,y) — A@)),

rzeX

B2(u)(p)(z) = N\ (w(z,y) — p(¥)).

yey

Then we have the following properties:
(1) We define a mapping ¥, : L(X,Y) — LX*Y as
follows:

Ti(¢)(z,) = \/H{ulz,y) | 21(u) 2 ¢}.

Then ¥1(¢)(z,) = A, (¢(1a — @)(y) — a). More-
over, if p(1; — @) = ¢(1,) — afor ¢ € L(X,Y), then

U1(@)(=, ) = ¢(12)(y)-
(2) We define a mapping Uq

follows:

s LY, X) — LXXY as

Then W2(4)(z,) = A, (4(1y = a)(@) — a). More-
over, if (1, — a) = ¥(1,) — afory € L(Y, X), then
Vo (¥)(z,y) = P(1y)(2).

) P10V > 1pxy) fd(ly = a) = ¢(1s) —
for ¢ € L(X,Y), the equality holds.

4) D30Ty > 1pyxy- HYp(ly — @) = ¢(1,) — o
for ¢ € L({Y, X), the equalities hold.

(5) \I/l ] @1 = ].LXXY and \IJQ o @2 = 1LX><Y.

(6) Let ¢ € L(X,Y). Then ¢ € & (LX*Y) if

ol — o) = ¢(1;) — a.
(7) Let v € L(Y,X). Then ¢ € ®o(LX*Y) if
P(ly — o) =¢(1,) — a
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Proof. (1) Since @1(V;cp ui)(MN)(Y) = Nier @1(w:)(A)(y)
from Lemma 2.3(4) and A = A_ x(1{;3 — A(2)), we
have:

“Ijl((;b)(x? y)

= V{u(z,y) | ®1(u) > ¢}

((by Theorem 2.6(7))

= V{u(z,y) | ¢(1z — A(@))(y)

< @1 (u)(le = M2))(y)}

\/{U(ﬂc,y) | o1z — AMz))(y)

= (1s = M2))(2))}
215(1z — A2))(y)

IA I IA TIA

Il
> > <
5 5
m M
N
NN

If (1, — a) = ¢(1,) — afor ¢ € L(X,Y), then

L@y = A (¢ = a) - a).

acl

Since (¢(12)(y) < (¢(12)(y) — @) = o, V1(9)(z,y) >
9(1)(y)-

Since Uy (¢)(z,y) < (¢(la)(y) — 0) — 0)
¢(1;)(y) from Lemma 2.3(10), we have Uy (¢)(z,y)
$(1a)(y)-

(2) It is similarly proved as in (1).

(3) We have @1 0 U3 > 1;xy) from

1l

K

¥y (9)

a:EX(

~—

M (y)
1(9) (2, y) = Ax))

Nacr(6(1: = a)(y) = a)) = A=)
612 = A@)(y) = A2)) > A=)

(1o = Az))(y)
(1 = Mz))(¥)

1

(S|

I
= >
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m
>
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Let (1, — a) = ¢(1,) — afor¢ € L(X,Y). Since
Aacr <(¢(1z)(y) — o) - a) = ¢(1;)(y), we have

P1(01(8))(M(w)
= Avex ((Naer ({12 = 0)(v) = @) = A=)

= Nvex ((Naep(@(12)w) = @) = ) = A@))

= Auex ((6(1:) (%) = A@))
= (M) (y)-

(4) Tt is similarly proved as in (3).
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(5) We have U1 o &y = 1 xxvy from
1 (®1(u))(z,y)
= Ao (21015 = 0)(v) = o)
= /\a /\zex(u(zay) — (1z = a)(z)) — OZ)
= Mo ((ulz,y) = @) = a)

= u(z,y).
Other case is similarly proved.
(6) It follows from:
oW = 6( Asex (e = A@) W)
= Neex #(1z = A(@))(y)

)
= Asex (1)) = A@))
(put u(z,y) = ¢(1.)(y))

= Noex(ulz,y) = A(z))
= 1(u)(M)(y).

(7) It is similar to (6).
O

Example 3.3. Let ([0,1],®) be a quantale defined as
x@y={(r+y—1)V0. We obtain

zoy=(1-z+y)Al, cdy=(z+y) AL

Let X = {z1,22} and Y = {y1,vy2} be sets and u €
LX*Y as follows

u(z1,y1) = 0.8,u(z1,92) = 0.7,
w(za2,y1) = 0.3, u(z2,y2) = 0.9.

We obtain &, (u) as follows:

<I>1(U)( )( )

D1 (u)(N)(y2)
= Neex (u(z,y2) = M)

= (u(z1,92) — Alz1)) A (u(ze, yz) — Az2))
= (0.34 A(z1)) A 0.1+ A(z2)) A

o7 () (@3 (W) (V) (21)
~Vyer (4(a1,9) © 21 ()(N(®)

= (w(z1,91) © P1(u)(A)(y1)) V (u(z1,y2) © P1(u)(A)(y2))

= (0.80 @1 (w)(M) (1)) V
- ()\(xl) A (0.5 + )\(:I;Z)) v (/\(ml) A
= Az1) A (0.5 + A(z2)).

(0.7 0 @1 (u)(A)(y2))

Foreachp € LY,

@17 (w)(p)(x1) = (0.2 4 p(y1)) V (=0.3 + p(y2)) VO
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(0.2 + A(u))

O (u)(p)(z2) = (=0.1+ p(y2)) VO

@1 (u)(21" () (p) (1) = py1) V

For each © € LX*Y

Uy (P21 (w)(z1,91)

= Naer (210) (1) = @)(11) = @)

= Noer (024 0) A (0T +1)AT) — a)
—0.8.

(=0.7+ p(y1)) vV

(p(y2) +0.6).

By a similar method, U1 o &1 = 1 xxv.

Example 3.4. Let ([0, 1], ©) be a quantale defined in Ex-
ample 3.3. Let X = {z1,zo} and Y = {y1,v2,y3}
be sets. For p(y1) = 0.8,p(y2) = 0.5,p(yz) = 0.6,
p(zy) = 0.7, u(zz) = 0.5, we define 1, , : LX — LY as
follows:
1 ifA=1,

Vup(A) = { P f1#A>pu,
0

otherwise

then ¢, , € L(X,Y’). We obtain

Uy (Yu,p)(@1,01) = J\ (%,p(l{zl} — a)(y) — a) =0.9.

W1(¢u,p)($1,y2) =
\I'l(wu,p)(m%yl) = 0.7, ‘1’1(%,p)($2,y2) =1,

Uy (3, 0)(T2,y3) = 0.9.

W1(¢u,p)(x1, y3) =1,

Since

P =Vup(layy — 0.7) # (qu:p(l{m}) - 0-7) =1,

we have 0.9 = Uy (¢,, ,)(21,91) # Vu,p(1{z})(¥1) = 0.
Furthermore, we have

21 (T3 () (N (1)
= Avex (T1000)(@,01) = A@))
= (‘1’1(¢u,p)($1ayl) - )\(331))

/\(‘I’l(wu,p)(fvmyl) — )\(562))
= (0.9 — A21)) A (0.7 = A(za))
= (01 + /\(ZL‘l)) A <03 + )\(SEQ)) Al
> PN (Y1)

By a similar method, we have @4 (

U1 (%up)(A) 2 Yo (N)-



Example 3.5. Let f : X — Y be a function and f* :
LY — L* defined by f—(p)(z) = p(f(x)). Since
7 (Nierpi) = Nier f~(pi) € L(Y, X) and

F7(y = a)(z) = (1y = a)(f(2))
=1,(f(2)) = a=f"(1y)(z) = a,

we obtain:

() (z,y) F(1ly — a)(x) — a)

= Aae
/\e (f~(1)(@) = @) = a)
= (1)(@).

G2 To(f NN = Ayey (¥2(f ) (@) = p(y)
= Ayey (J7(1)(@) = p(1))
= I (Ayey (1)(@) = p(w))

= 1= (@)
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