Fuzzy Relations and Meet Preserving Maps

Yong Chan Kim¹, Young Sun Kim²

1 Department of Mathematics, Kangnung National University, Gangneung, 201-702, Korea ² Department of Applied Mathematics, Paichai University, Daejeon, 302-735, Korea

Abstract

We investigate the properties of fuzzy relations and meet preserving maps on strictly two-sided, commutative quantales. Moreover, we study the relations between them.

Key words: stsc-quantales, meet preserving maps, (left) right adjointness

1. Introduction

Ouantales were introduced by Mulvey [9] as the noncommutative generalization of the lattice of open sets in topological spaces. Recently, quantales have arisen in an analysis of the semantics of linear logic systems developed by Girard [1], which supports part of foundation of theoretic computer science. Höhle et al. [4,5] introduced the notion of L-fuzzy relation on a complete quasi-monoidal lattice (including GL-monoid [2]) L instead of a completely distributive lattice or the unit interval[8,11]. The notion of L-fuzzy relation facilitated to study fuzzy equivalence relations, fuzzy rough sets, L-fuzzy topological structures [8,11].

In this paper, we investigate the properties of fuzzy relations and meet preserving maps on a strictly two-sided, commutative quantale lattice L. Moreover, we study the relations between meet preserving maps and fuzzy relations.

2. Preliminaries

Definition 2.1. [6,9-11] A triple (L, \leq, \odot) is called a strictly two-sided, commutative quantale (stsc-quantale, for short) iff it satisfies the following properties:

(L1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a completely distributive lattice where 1 is the universal upper bound and 0 is the universal lower bound;

- (L2) (L, \odot) is a commutative semigroup;
- (L3) $a = a \odot 1$, for each $a \in L$;
- (L4) ⊙ is distributive over arbitrary joins, i.e.,

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Remark 2.2. [4,5,7-12](1) A completely distributive lattice (ref. [11]) is a stsc-quantale. In particular, the unit interval $([0,1], \leq, \vee, \wedge, 0, 1)$ is a stsc-quantale.

- (2) The unit interval with a continuous t-norm t, $([0,1], \leq, t)$, is a stsc-quantale.
- (3) Let (L, \leq, \odot) be a stsc-quantale. For each $x, y \in L$, we define

$$x \to y = \bigvee \{z \in L \mid x \odot z \le y\}.$$

Then it satisfies Galois correspondence, that is,

$$(x \odot y) \le z \Leftrightarrow x \le (y \to z).$$

In this paper, we always assume that $(L, \leq, \odot, *)$ is a stsc-quantale with strong negation * where $a^* = a \rightarrow 0$. We denote 1_x a characteristic function of $\{x\}$.

Let X be a nonempty set. All algebraic operations on Lcan be extended pointwisely to the set L^X as follows: for all $x \in X$, $\lambda, \mu \in L^X$ and $\alpha \in L$,

- (1) $\lambda \leq \mu$ iff $\lambda(x) \leq \mu(x)$;
- (2) $(\lambda \odot \mu)(x) = \lambda(x) \odot \mu(x)$;
- (3) $1_X(x) = 1$, $\alpha \odot 1_X(x) = \alpha$ and $1_{\emptyset}(x) = 0$;
- (4) $(\alpha \rightarrow \lambda)(x) = \alpha \rightarrow \lambda(x)$ and $(\lambda \rightarrow \alpha)(x) =$ $\lambda(x) \rightarrow \alpha$:
 - (5) $(\alpha \odot \lambda)(x) = \alpha \odot \lambda(x)$.

Lemma 2.3. [6,12] For each $x, y, z, x_i, y_i \in L$, we have the following properties.

- (1) If $y \le z$, then $(x \odot y) \le (x \odot z)$, $x \to y \le x \to z$ and $z \to x \le y \to x$.
 - (2) $x \odot y \le x \land y \le x \lor y$.
 - (3) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i).$

 - $(4) (\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y_i).$ $(5) x \to (\bigvee_{i \in \Gamma} y_i) \ge \bigvee_{i \in \Gamma} (x \to y_i).$ $(6) (\bigwedge_{i \in \Gamma} x_i) \to y \ge \bigvee_{i \in \Gamma} (x_i \to y).$ $(7) \bigwedge_{i \in \Gamma} y_i^* = (\bigvee_{i \in \Gamma} y_i)^* \text{ and } \bigvee_{i \in \Gamma} y_i^* = (\bigwedge_{i \in \Gamma} y_i)^*.$ $(8) (x \odot y) \to z = x \to (y \to z) = y \to (x \to z).$

 - (9) $x \odot y = (x \to y^*)^*$.
 - $(10) x \le (x \to y) \to y.$
 - (11) $x \le y \to z \text{ iff } y \le x \to z.$

Manuscript received May. 24, 2007; revised Sep. 10, 2007.

Definition 2.4. [6,8,11] Let $\phi: M \to N$ and $\psi: N \to M$ be order-preserving maps between partially ordered sets $M, N. \phi$ is left adjoint of $\psi, \phi \dashv \psi$, iff $\phi(a) \leq b \Leftrightarrow a \leq b$ $\psi(b)$. Equivalently, $\phi \dashv \psi$ iff $id_M \leq \psi \circ \phi$ and $\phi \circ \psi \leq id_N$.

Definition 2.5. [7] A map ψ : $L^X \rightarrow L^Y$ is a meet-preserving map if $\psi(\bigwedge_{i\in\Gamma}\lambda_i)=\bigwedge_{i\in\Gamma}\psi(\lambda_i)$, for $\{\lambda_i\}_{i\in\Gamma}\subset L^X$. We denote L(X,Y) a family of meetpreserving maps.

Theorem 2.6. [7] For $\psi, \psi_1 \in L(X,Y)$ and $\psi_2 \in$ L(Y,Z), we define, for all $\lambda \in L^X$, $\rho \in L^Y$,

$$\psi^{-1}(\rho) = \bigvee \{ \lambda \in L^X \mid \psi(\lambda^*) \ge \rho^* \},$$

$$\psi_1 \circ \psi_2(\lambda) = \psi_1(\psi_2(\lambda)).$$

Then the following properties hold:

(1) $\psi^{\rightarrow}(\rho) = \bigwedge \{\lambda \in L^X \mid \psi(\lambda) \geq \rho\}$ such that ψ^{\rightarrow} is a left adjoint of ψ with $\rho \leq \psi \circ \psi^{\rightarrow}(\rho)$ and $\psi^{\rightarrow} \circ \psi(\lambda) \leq \lambda$.

(2) $\psi^{-1}(\rho) = (\psi^{\rightarrow}(\rho^*))^*$ and $\psi^{-1} \in L(Y, X)$ such that

$$\psi(\lambda) \ge \rho \Leftrightarrow \lambda \ge \psi^{-1}(\rho) \Leftrightarrow \psi^{-1}(\rho^*) \ge \lambda^*$$

- (3) $(\psi^{-1})^{-1} = \psi$.
- (4) If $\psi_1 \leq \psi_2$, then $\psi_1^{-1} \leq \psi_2^{-1}$. (5) If $\phi \in L(Y, Z)$, then $\phi \circ \psi \in L(X, Z)$ and $(\phi \circ \psi)^{-1} = \psi^{-1} \circ \phi^{-1} \in L(Z, X).$
- (6) If $\psi(1_x \to \lambda(x)) = \rho_x$ for all $x \in X$, then $\psi(\lambda) = \bigwedge_{z \in X} \rho_z.$
- (7) If $\psi_1(1_x \to \alpha) = \psi_2(1_x \to \alpha)$ for all $x \in X$, then $\psi_1 = \psi_2$.

3. Fuzzy relations and Meet preserving maps

In this section, we investigate the relationships between fuzzy relations and meet preserving maps.

Theorem 3.1. For each $u \in L^{X \times Y}$, we define mappings $\Phi_1(u): L^X \to L^Y$ and $\Phi_2(u): L^Y \to L^X$ as follows:

$$\Phi_1(u)(\lambda)(y) = \bigwedge_{x \in X} (u(x,y) \to \lambda(x)),$$

$$\Phi_2(u)(\rho)(x) = \bigwedge_{y \in Y} (u(x, y) \to \rho(y)).$$

Then we have the following properties:

(1) $\Phi_1(u) \in L(X,Y)$ and $\Phi_2(u) \in L(Y,X)$. For each $i=1,2, \Phi_i(u)$ has a left adjoint mapping $\Phi_i^{\rightarrow}(u)$, respectively, defined by

$$\Phi_1^{\rightarrow}(u)(\rho)(x) = \bigvee_{y \in Y} (u(x,y) \odot \rho(y)),$$

$$\Phi_2^{\rightarrow}(u)(\lambda)(y) = \bigvee_{x \in X} (u(x,y) \odot \lambda(x)).$$

(2) For each $x \in X$, $\alpha \in L$ and $y \in Y$,

$$\Phi_1(u)(1_x \to \alpha)(y) = u(x,y) \to \alpha,$$

$$\Phi_2(u)(1_y \to \alpha)(x) = u(x,y) \to \alpha,$$

(3) For each $\lambda \in L^X$ and $\rho \in L^Y$,

$$\Phi_1(u)(\lambda)(y) = \bigwedge_{x \in X} \Phi_1(u)(1_x \to \lambda(x))(y),$$

$$\Phi_2(u)(\rho)(x) = \bigwedge_{y \in Y} \Phi_2(u)(1_y \to \rho(y))(x).$$

(4) For each $u \in L^{X \times Y}$ and each i = 1, 2, we define

$$\Phi_1(u)^{-1}(\rho) = (\Phi_1^{\rightarrow}(u)(\rho^*))^*,$$

$$\Phi_2(u)^{-1}(\lambda) = (\Phi_2^{\to}(u)(\lambda^*))^*.$$

Then $\Phi_1(u)^{-1} = \Phi_2(u)$ and $\Phi_2(u)^{-1} = \Phi_1(u)$.

Proof. (1) $\Phi_1(u) \in L(X,Y)$ from:

$$\begin{split} &\Phi_1(u)(\bigwedge_{i\in\Gamma}\lambda_i)(y)\\ &=\bigwedge_{x\in X}(u(x,y)\to \bigwedge_{i\in\Gamma}\lambda_i(x))\\ &(\text{by Lemma 2.3(3)})\\ &=\bigwedge_{i\in\Gamma}\Big(\bigwedge_{x\in X}(u(x,y)\to \lambda_i(x)\Big)\\ &=\bigwedge_{i\in\Gamma}\Phi_1(u)(\lambda_i)(y). \end{split}$$

Since $\Phi_1(u) \in L(X,Y)$, by Theorem 2.6(1), we obtain $\Phi_1^{\rightarrow}(u)$ as follows:

$$\begin{array}{l} \Phi_1^{\rightarrow}(u)(\rho)(x) \\ = \bigwedge\{\lambda(x) \mid \rho(y) \leq \Phi_1(u)(\lambda)(y)\} \\ = \bigwedge\{\lambda(x) \mid \rho(y) \leq \bigwedge(u(x,y) \rightarrow \lambda(x))\} \\ = \bigwedge\{\lambda(x) \mid \bigvee_{y \in Y}(\rho(y) \odot u(x,y)) \leq \lambda(x))\} \\ = \bigvee_{y \in Y}(\rho(y) \odot u(x,y)) \end{array}$$

It follows

$$\begin{split} &\Phi_{1}(u)(\Phi_{1}^{\rightarrow}(u)(\rho))(y)\\ &=\bigwedge_{x\in X}\{u(x,y)\rightarrow\Phi_{1}^{\rightarrow}(u)(\rho)(x)\}\\ &=\bigwedge_{x\in X}\{u(x,y)\rightarrow\bigvee_{y\in Y}(\rho(y)\odot u(x,y))\}\\ &\text{(by Lemma 2.3(5))}\\ &\geq\bigwedge_{x\in X}\bigvee_{y\in Y}\{u(x,y)\rightarrow(\rho(y)\odot u(x,y))\}\\ &\geq\rho(y). \end{split}$$

$$\begin{aligned} & \Phi_1^{-1}(u)(\Phi_1(u)(\lambda))(x) \\ &= \bigvee_{y \in Y} \{ u(x, y) \odot \Phi_1(u)(\lambda)(y) \} \\ &= \bigvee_{y \in Y} \{ u(x, y) \odot \bigwedge_{x \in X} (u(x, y) \to \lambda(x)) \} \\ &\leq \bigvee_{y \in Y} \{ u(x, y) \odot (u(x, y) \to \lambda(x)) \} \\ &\leq \lambda(x). \end{aligned}$$

Hence $\Phi_1(u)$ has a left adjoint mapping $\Phi_1^{\rightarrow}(u)$.

(2) It follows from:

$$\begin{array}{ll} \Phi_1(u)(1_x \to \alpha)(y) &= \bigwedge_{z \in X} (u(z,y) \to (1_x \to \alpha)(z)) \\ &= u(x,y) \to \alpha. \end{array}$$

Other case is similarly proved.

(3) Since $\Phi_1(u) \in L(X,Y)$ and $\lambda = \bigwedge_{x \in X} (1_x \to \lambda(x))$, we have

$$\begin{array}{ll} \Phi_1(u)(\lambda)(y) &= \Phi_1(u)(\bigwedge_{x \in X} (1_x \to \lambda(x)))(y) \\ &= \bigwedge_{x \in X} \Phi_1(u)(1_x \to \lambda(x))(y). \end{array}$$

Other case is similarly proved.

(4)

$$\begin{split} \Phi_1(u)^{-1}(\rho)(x) &= (\Phi_1^{\rightarrow}(u)(\rho^*)(x))^* \\ &= \Big(\bigvee_{y \in Y} u(x,y) \odot \rho^*(y)\Big)^* \\ &\quad \text{(by Lemma 2.3(7,9))} \\ &= \bigwedge_{y \in Y} (u(x,y) \to \rho(y)) \\ &= \Phi_2(u)(\rho)(x). \end{split}$$

Theorem 3.2. We define mappings $\Phi_1: L^{X\times Y} - L(X,Y)$ and $\Phi_2: L^{X\times Y} \to L(Y,X)$ as follows:

$$\Phi_1(u)(\lambda)(y) = \bigwedge_{x \in X} (u(x,y) \to \lambda(x)),$$

$$\Phi_2(u)(\rho)(x) = \bigwedge_{y \in Y} (u(x, y) \to \rho(y)).$$

Then we have the following properties:

(1) We define a mapping $\Psi_1: L(X,Y) \to L^{X \times Y}$ as follows:

$$\Psi_1(\phi)(x,y) = \bigvee \{u(x,y) \mid \Phi_1(u) \ge \phi\}.$$

Then $\Psi_1(\phi)(x,y) = \bigwedge_{\alpha} \Big(\phi(1_x \to \alpha)(y) \to \alpha\Big)$. Moreover, if $\phi(1_x \to \alpha) = \phi(1_x) \to \alpha$ for $\phi \in L(X,Y)$, then $\Psi_1(\phi)(x,y) = \phi(1_x)(y)$.

(2) We define a mapping $\Psi_2:L(Y,X)\to L^{X\times Y}$ as follows:

$$\Psi_2(\psi)(x,y) = \bigvee \{u(x,y) \mid \Phi_2(u) \ge \psi\}.$$

Then $\Psi_2(\psi)(x,y) = \bigwedge_{\alpha} \Big(\psi(1_y \to \alpha)(x) \to \alpha \Big)$. Moreover, if $\psi(1_y \to \alpha) = \psi(1_y) \to \alpha$ for $\psi \in L(Y,X)$, then $\Psi_2(\psi)(x,y) = \psi(1_y)(x)$.

(3) $\Phi_1 \circ \Psi_1 \ge 1_{L(X,Y)}$. If $\phi(1_x \to \alpha) = \phi(1_x) \to \alpha$ for $\phi \in L(X,Y)$, the equality holds.

(4) $\Phi_2 \circ \Psi_2 \ge 1_{L(Y,X)}$. If $\psi(1_y \to \alpha) = \psi(1_y) \to \alpha$ for $\psi \in L(Y,X)$, the equalities hold.

(5) $\Psi_1 \circ \Phi_1 = 1_{L^{X \times Y}}$ and $\Psi_2 \circ \Phi_2 = 1_{L^{X \times Y}}$.

(6) Let $\phi \in L(X,Y)$. Then $\phi \in \Phi_1(L^{X\times Y})$ if $\phi(1_x \to \alpha) = \phi(1_x) \to \alpha$.

(7) Let $\psi \in L(Y,X)$. Then $\psi \in \Phi_2(L^{X\times Y})$ if $\psi(1_y \to \alpha) = \psi(1_y) \to \alpha$.

Proof. (1) Since $\Phi_1(\bigvee_{i\in\Gamma}u_i)(\lambda)(y)=\bigwedge_{i\in\Gamma}\Phi_1(u_i)(\lambda)(y)$ from Lemma 2.3(4) and $\lambda=\bigwedge_{z\in X}(1_{\{z\}}\to\lambda(z))$, we have:

$$\begin{split} &\Psi_1(\phi)(x,y) \\ &= \bigvee \{u(x,y) \mid \Phi_1(u) \geq \phi \} \\ &((\text{by Theorem 2.6(7)}) \\ &= \bigvee \{u(x,y) \mid \phi(1_x \rightarrow \lambda(x))(y) \\ &\leq \Phi_1(u)(1_x \rightarrow \lambda(x))(y) \} \\ &= \bigvee \{u(x,y) \mid \phi(1_x \rightarrow \lambda(x))(y) \\ &\leq \bigwedge_{z \in X} (u(z,y) \rightarrow (1_x \rightarrow \lambda(x))(z)) \} \\ &= \bigvee \{u(x,y) \mid \phi(1_x \rightarrow \lambda(x))(y) \\ &\leq u(x,y) \rightarrow \lambda(x) \} \\ &= \bigvee \{u(x,y) \mid u(x,y) \\ &\leq \bigwedge_{\alpha \in L} \left(\phi(1_x \rightarrow \alpha)(y) \rightarrow \alpha\right) \} \\ &= \bigwedge_{\alpha \in L} \left(\phi(1_x \rightarrow \alpha)(y) \rightarrow \alpha\right) \end{split}$$

If
$$\phi(1_x \to \alpha) = \phi(1_x) \to \alpha$$
 for $\phi \in L(X, Y)$, then

$$\Psi_1(\phi)(x,y) = \bigwedge_{\alpha \in L} \Big((\phi(1_x)(y) \to \alpha) \to \alpha \Big).$$

Since $(\phi(1_x)(y) \leq (\phi(1_x)(y) \to \alpha) \to \alpha, \Psi_1(\phi)(x,y) \geq \phi(1_x)(y)$.

Since $\Psi_1(\phi)(x,y) \leq (\phi(1_x)(y) \rightarrow 0) \rightarrow 0) = \phi(1_x)(y)$ from Lemma 2.3(10), we have $\Psi_1(\phi)(x,y) = \phi(1_x)(y)$.

- (2) It is similarly proved as in (1).
- (3) We have $\Phi_1 \circ \Psi_1 \geq 1_{L(X,Y)}$ from

$$\begin{split} &\Phi_1(\Psi_1(\phi))(\lambda)(y) \\ &= \bigwedge_{x \in X} (\Psi_1(\phi)(x,y) \to \lambda(x)) \\ &= \bigwedge_{x \in X} \left(\left(\bigwedge_{\alpha \in L} (\phi(1_x \to \alpha)(y) \to \alpha)) \to \lambda(x) \right) \\ &\geq \bigwedge_{x \in X} \left(\left(\phi(1_x \to \lambda(x))(y) \to \lambda(x) \right) \to \lambda(x) \right) \\ &\geq \bigwedge_{x \in X} (\phi(1_x \to \lambda(x))(y) \\ &= \phi(\bigwedge_{x \in X} (1_x \to \lambda(x)))(y) \\ &= \phi(\lambda)(y). \end{split}$$

Let
$$\phi(1_x \to \alpha) = \phi(1_x) \to \alpha$$
 for $\phi \in L(X, Y)$. Since $\bigwedge_{\alpha \in L} \left((\phi(1_x)(y) \to \alpha) \to \alpha \right) = \phi(1_x)(y)$, we have

$$\begin{split} &\Phi_1(\Psi_1(\phi))(\lambda)(y) \\ &= \bigwedge_{x \in X} \Big((\bigwedge_{\alpha \in L} (\phi(1_x \to \alpha)(y) \to \alpha)) \to \lambda(x) \Big) \\ &= \bigwedge_{x \in X} \Big((\bigwedge_{\alpha \in L} (\phi(1_x)(y) \to \alpha) \to \alpha)) \to \lambda(x) \Big) \\ &= \bigwedge_{x \in X} \Big((\phi(1_x)(y) \to \lambda(x) \Big) \\ &= \phi(\lambda)(y). \end{split}$$

(4) It is similarly proved as in (3).

(5) We have
$$\Psi_1 \circ \Phi_1 = 1_{L^{X \times Y}}$$
 from

$$\begin{split} &\Psi_1(\Phi_1(u))(x,y) \\ &= \bigwedge_{\alpha} \left(\Phi_1(u)(1_x \to \alpha)(y) \to \alpha \right) \\ &= \bigwedge_{\alpha} \left(\bigwedge_{z \in X} (u(z,y) \to (1_x \to \alpha)(z)) \to \alpha \right) \\ &= \bigwedge_{\alpha} \left((u(x,y) \to \alpha) \to \alpha \right) \\ &= u(x,y). \end{split}$$

Other case is similarly proved.

(6) It follows from:

$$\begin{split} \phi(\lambda)(y) &= \phi\Big(\bigwedge_{x \in X} (1_x \to \lambda(x))\Big)(y) \\ &= \bigwedge_{x \in X} \phi(1_x \to \lambda(x))(y) \\ &= \bigwedge_{x \in X} \Big(\phi(1_x)(y) \to \lambda(x)\Big) \\ &\quad (\text{put } u(x,y) = \phi(1_x)(y)) \\ &= \bigwedge_{x \in X} (u(x,y) \to \lambda(x)) \\ &= \Phi_1(u)(\lambda)(y). \end{split}$$

(7) It is similar to (6).

Example 3.3. Let $([0,1], \odot)$ be a quantale defined as $x \odot y = (x+y-1) \lor 0$. We obtain

$$x \rightarrow y = (1 - x + y) \land 1, \quad x \oplus y = (x + y) \land 1.$$

Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$ be sets and $u \in L^{X \times Y}$ as follows

$$u(x_1, y_1) = 0.8, u(x_1, y_2) = 0.7,$$

 $u(x_2, y_1) = 0.3, u(x_2, y_2) = 0.9.$

We obtain $\Phi_1(u)$ as follows:

$$\begin{split} & \Phi_1(u)(\lambda)(y_1) \\ &= \bigwedge_{x \in X} (u(x, y_1) \to \lambda(x)) \\ &= (u(x_1, y_1) \to \lambda(x_1)) \wedge (u(x_2, y_1) \to \lambda(x_2)) \\ &= (0.2 + \lambda(x_1)) \wedge (0.7 + \lambda(x_2)) \wedge 1 \end{split}$$

$$\begin{aligned} & \Phi_1(u)(\lambda)(y_2) \\ &= \bigwedge_{x \in X} (u(x, y_2) \to \lambda(x)) \\ &= (u(x_1, y_2) \to \lambda(x_1)) \wedge (u(x_2, y_2) \to \lambda(x_2)) \\ &= (0.3 + \lambda(x_1)) \wedge (0.1 + \lambda(x_2)) \wedge 1 \end{aligned}$$

$$\begin{split} & \Phi_{1}^{\rightarrow}(u)(\Phi_{1}(u))(\lambda)(x_{1}) \\ & = \bigvee_{y \in Y} \Big(u(x_{1}, y) \odot \Phi_{1}(u)(\lambda)(y) \Big) \\ & = (u(x_{1}, y_{1}) \odot \Phi_{1}(u)(\lambda)(y_{1})) \vee (u(x_{1}, y_{2}) \odot \Phi_{1}(u)(\lambda)(y_{2})) \\ & = (0.8 \odot \Phi_{1}(u)(\lambda)(y_{1})) \vee (0.7 \odot \Phi_{1}(u)(\lambda)(y_{2})) \\ & = \Big(\lambda(x_{1}) \wedge (0.5 + \lambda(x_{2})) \vee \Big(\lambda(x_{1}) \wedge (-0.2 + \lambda(x_{2})) \Big) \\ & = \lambda(x_{1}) \wedge (0.5 + \lambda(x_{2})). \end{split}$$

For each $\rho \in L^Y$,

$$\Phi_1^{\rightarrow}(u)(\rho)(x_1) = (-0.2 + \rho(y_1)) \lor (-0.3 + \rho(y_2)) \lor 0$$

$$\Phi_1^{\rightarrow}(u)(\rho)(x_2) = (-0.7 + \rho(y_1)) \vee (-0.1 + \rho(y_2)) \vee 0$$

$$\Phi_1(u)(\Phi_1^{\rightarrow}(u))(\rho)(y_1) = \rho(y_1) \vee (\rho(y_2) + 0.6).$$

For each $u \in L^{X \times Y}$,

$$\begin{split} &\Psi_1(\Phi_1(u))(x_1,y_1)\\ &= \bigwedge_{\alpha \in L} \left(\Phi_1(u)(1_{\{x_1\}} \to \alpha)(y_1) \to \alpha\right)\\ &= \bigwedge_{\alpha \in L} \left((0.2 + \alpha) \wedge (0.7 + 1) \wedge 1) \to \alpha\right)\\ &= 0.8. \end{split}$$

By a similar method, $\Psi_1 \circ \Phi_1 = 1_{L^{X \times Y}}$.

Example 3.4. Let $([0,1], \odot)$ be a quantale defined in Example 3.3. Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2, y_3\}$ be sets. For $\rho(y_1) = 0.8, \rho(y_2) = 0.5, \rho(y_3) = 0.6, \mu(x_1) = 0.7, \mu(x_2) = 0.5$, we define $\psi_{\mu,\rho}: L^X \to L^Y$ as follows:

$$\psi_{\mu,\rho}(\lambda) = \begin{cases} \overline{1} & \text{if } \lambda = \overline{1}, \\ \rho & \text{if } \overline{1} \neq \lambda \geq \mu, \\ \overline{0} & \text{otherwise} \end{cases}$$

then $\psi_{\mu,\rho} \in L(X,Y)$. We obtain

$$\Psi_1(\psi_{\mu,\rho})(x_1,y_1) = \bigwedge_{\alpha} \left(\psi_{\mu,\rho}(1_{\{x_1\}} \to \alpha)(y_1) \to \alpha \right) = 0.9.$$

$$\Psi_1(\psi_{\mu,\rho})(x_1,y_2) = \Psi_1(\psi_{\mu,\rho})(x_1,y_3) = 1,$$

$$\Psi_1(\psi_{\mu,\rho})(x_2,y_1) = 0.7, \ \Psi_1(\psi_{\mu,\rho})(x_2,y_2) = 1,$$

$$\Psi_1(\psi_{\mu,\rho})(x_2,y_3) = 0.9.$$

Since

$$\rho = \psi_{\mu,\rho}(1_{\{x_1\}} \to 0.7) \neq \Big(\psi_{\mu,\rho}(1_{\{x_1\}}) \to 0.7\Big) = 1,$$

we have $0.9 = \Psi_1(\psi_{\mu,\rho})(x_1,y_1) \neq \psi_{\mu,\rho}(1_{\{x_1\}})(y_1) = 0$. Furthermore, we have

$$\begin{split} &\Phi_1(\Psi_1(\psi_{\mu,\rho})(\lambda)(y_1) \\ &= \bigwedge_{x \in X} \left(\Psi_1(\psi_{\mu,\rho})(x,y_1) \to \lambda(x) \right) \\ &= \left(\Psi_1(\psi_{\mu,\rho})(x_1,y_1) \to \lambda(x_1) \right) \\ &\wedge \left(\Psi_1(\psi_{\mu,\rho})(x_2,y_1) \to \lambda(x_2) \right) \\ &= (0.9 \to \lambda(x_1)) \wedge (0.7 \to \lambda(x_2)) \\ &= (0.1 + \lambda(x_1)) \wedge (0.3 + \lambda(x_2)) \wedge 1 \\ &\geq \psi_{\mu,\rho}(\lambda)(y_1). \end{split}$$

By a similar method, we have $\Phi_1(\Psi_1(\psi_{\mu,\rho})(\lambda) \geq \psi_{\mu,\rho}(\lambda)$.

Example 3.5. Let $f: X \to Y$ be a function and $f^{\leftarrow}: L^Y \to L^X$ defined by $f^{\leftarrow}(\rho)(x) = \rho(f(x))$. Since $f^{\leftarrow}(\wedge_{i \in \Gamma} \rho_i) = \wedge_{i \in \Gamma} f^{\leftarrow}(\rho_i) \in L(Y, X)$ and

$$f^{\leftarrow}(1_y \to \alpha)(x) = (1_y \to \alpha)(f(x))$$

= $1_y(f(x)) \to \alpha = f^{\leftarrow}(1_y)(x) \to \alpha$,

we obtain:

$$\begin{split} \Psi_2(f^{\leftarrow})(x,y) &= \bigwedge_{\alpha \in L} \Big(f^{\leftarrow}(1_y \to \alpha)(x) \to \alpha \Big) \\ &= \bigwedge_{\alpha \in L} \Big((f^{\leftarrow}(1_y)(x) \to \alpha) \to \alpha \Big) \\ &= f^{\leftarrow}(1_y)(x). \end{split}$$

$$\begin{split} \Phi_2(\Psi_2(f^\leftarrow)(\rho))(x) &= \bigwedge_{y \in Y} \left(\Psi_2(f^\leftarrow)(x,y) \to \rho(y) \right) \\ &= \bigwedge_{y \in Y} \left(f^\leftarrow(1_y)(x) \to \rho(y) \right) \\ &= f^\leftarrow(\bigwedge_{y \in Y} (1_y)(x) \to \rho(y)) \\ &= f^\leftarrow(\rho)(x). \end{split}$$

REFERENCES

- [1] J.Y. Girard, *Linear logic*, Theoret. Comp. Sci. 50, 1987, 1-102.
- [2] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht (1998).
- [3] U. Höhle, *Many valued topology and its applications*, Kluwer Academic Publisher, Boston, (2001).
- [4] U. Höhle, E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.
- [5] U. Höhle, S. E. Rodabaugh, *Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory,* The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).

- [6] Y.C. Kim, J.M. Ko, Images and preimages of filterbases, Fuzzy Sets and Systems, 157, 2006, 1913-1927.
- [7] Y.C. Kim, Y.S. Kim, Meet preserving maps, (submit to) J. Fuzzy Logic and Intelligent Systems.
- [8] Liu Ying-Ming, *Projective and injective objects in the category of quantales*, J. of Pure and Applied Algebra, 176, 2002, 249-258.
- [9] C.J. Mulvey, Quantales, Suppl. Rend. Cric. Mat. Palermo Ser.II 12,1986,99-104.
- [10] C.J. Mulvey, J.W. Pelletier, On the quantisation of point, J. of Pure and Applied Algebra, 159, 2001, 231-295.
- [11] S. E. Rodabaugh, E. P. Klement, *Toplogical And Algebraic Structures In Fuzzy Sets*, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
- [12] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in Department of Mathematics Kangnung University. His reserch interests are fuzzy topology and fuzzy logic.

Young Sun Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in Department of Applied Mathematics, Pai Chai University. His reserch interests are fuzzy topology and fuzzy logic.