Does Higher Datarate Perform Better in IEEE 802.11-based Multihop Ad Hoc Networks?

  • Published : 2007.09.30

Abstract

Due to the nature that high datarate leads to shorter transmission range, the performance enhancement by high datarate 802.11 WLANs may be degraded when applying high datarate to an 802.11 based multihop ad hoc network. In this paper, we evaluate, through extensive simulations, the performance of multihop ad hoc networks at multiple transmission datarates, in terms of the number of hops between source and destination, throughput, end-to-end delay and packet loss. The study is conducted based on both stationary chain topology and mesh topologies with or without node mobility. From numerical results on network performance based on chain topology, we conclude that there is almost no benefit by applying the highest datarate when the chain length is 6 hops or more. With node mobility in mesh topology, the benefit of using high datarate diminishes at even shorter number of hops. To explore the main reasons for this behavior, analyses on multihop end-to-end throughput and network k-connectivity have been conducted later in the paper, and correspondingly an auto-rate adaptation algorithm has been proposed.

Keywords

References

  1. IEEE Computer Society, 'Local and metropolitan area networks: Wireless LAN medium access control (MAC) and physical (PHY) specifications,' IEEE std 802.11, 1999 Ed., 1999
  2. IEEE Computer Society, 'Supplement to part 11: Wireless LAN medium access control (MAC) and physical (PHY) specifications: high-speed physical layer extensions in the 2.4 GHz band,' IEEE std 802.11 b, 1999 Ed., 2000
  3. IEEE Computer Society, 'Supplement to part 11: Wireless LAN medium access control (MAC) and physical (PHY) specifications, amendment 4: Higher data rate extension in the 2.4 GHz band,' IEEE std 802.11g, 2003 Ed., 2003
  4. IEEE Computer Society, 'Supplement to part 11: Wireless LAN medium access control (MAC) and physical (PHY) specifications: enhancements for higher throughput,' IEEE P802.11n$^{TM}$ /D2.0, Mar. 2007
  5. G. Holland, N. Vaidya, and P. Bahl, 'A rate-adaptive MAC protocol for multi-hop wireless networks,' in Proc. ACM MobiCom, Rome, Italy, July 2001
  6. A. Kamerman and L. Monteban, 'WaveLAN-II: A high-performance wireless LAN for the unlicensed band,' Bell Labs Tech. J., pp.118-133, July 1997
  7. J. P. Pavon and S. Choi, 'Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement,' in Proc. IEEE ICC, Anchorage, USA, May 2003
  8. E-S. Jung and N.H. Vaidya, 'A power control MAC protocol for ad hoc networks,' in Proc. ACM MobiCom, Atlanta, USA, Sept. 2002
  9. X. Guo, S. Roy, and W. S. Conner, 'Spatial reuse in wireless ad-hoc networks,' in Proc. IEEE VTC Fall, Florida, USA, Oct. 2003
  10. J. Zhu, X. Guo, L. L. Yang, W. S. Conner, S. Roy, and M. M. Hazra, 'Adaptive physical carrier sensing to maximize spatial reuse in 802.11 mesh networks,' Wireless Commun. Mobile Computing, vol. 4. no. 8, pp. 933-946, Nov. 2004 https://doi.org/10.1002/wcm.264
  11. X. Yang and N. Vaidya, 'On the physical carrier sense in wireless ad hoc networks,' in Proc. IEEE INFOCOM, Miami, USA, Mar. 2005
  12. F. Y. Li and O. Kure, 'Optimal physical carrier sense range in mu1tirate wireless ad hoc networks: Analytical versus realistic,' in Proc. European Wireless EW, Nicosia, Cyprus, Apr. 2005
  13. J. Jun, P. Peddabachagari, and M. Sichitiu, 'Theoretical maximum throughput of IEEE 802.11 and its applications,' in Proc. Int. Symp. on Network, Computing and Applications (NCA), Cambridg, MA, USA, Apr. 2003
  14. ORiNOCO Classic Gold PC Card, [Online]. Available: http://www.proxim.com/
  15. G. Anastasi, E. Borgia, M. Conti, and E. Gregori, 'IEEE 802.11 ad hoc networks: Performance measurements,' in Proc. Workshop on Mobile and Wireless Networks (MWN), Rhode Island, USA, May 2003
  16. The Network Simulator - ns-2, [Online]. Available: http://www.isi.edu/nsnaru/ns/
  17. C. E. Perkins, E. M. Royer, and S. Das, 'Ad hoc on-demand distance vector (AODV) routing,' RFC 3561, IETF, July 2003
  18. T. Clausen and P. Jacquet, 'Optimized link state routing protocol (OLSR),' RFC 3626, IETF, Oct. 2003
  19. M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, 'Performance anomaly of IEEE 802.11,' in Proc. IEEE INFOCOM, San Francisco, USA, 2003
  20. F. Y. Li, E. Winjum, and P. Spilling, 'Connectivity-aware rate adaptation for 802.11 multirate ad hoc networking,' in Proc. 19th International Teletraffic Congress (ITC), Beijing, China, Sept. 2005
  21. W. Navidi and T. Camp, 'Stationary distributions for the random waypoint mobility model,' IEEE Trans. Mobile Computing, vol. 3, no. 1, pp. 99108, Jan. 2004 https://doi.org/10.1109/TMC.2004.1261820
  22. J. Li, C. Blake, D.SJ. De Couto, H.I. Lee ,and R. Morris, 'Capacity of ad hoc wireless networks,' in Proc. IEEE MobiCom, Rome, Italy, July 2001
  23. 3GPP TS23.107v6.1.0, 'Quality of Service (QoS) concept and architecture,' Mar. 2004, [Online]. Available: http://www.3gpp.org
  24. Cisco, 'Aironet 802.11a/b/g wireless LAN client adapters CB21AG and P121AG installation and configuration guide: Appendix A,' [Online]. Available: http://www.cisco.com
  25. T. S. Rappaport, Wireless Communications, Principles and Practices, 2nd Ed. New Jersey: Prentics-Hall, Inc., 2002
  26. C. Bettstetter, 'On the minimum node degree and connectivity of a wireless muitihop network,' in Proc. ACM MobiHoc, Lausanne, Switzerland, June 2002
  27. C. Bettstetter, 'Mobility modeling in wireless networks: Categorization, smooth movement, and border effects,' ACM MC2R, vol. 5, no. 3, pp. 535-547, 2001
  28. J. Yoon, M. Liu, and B. Noble, 'Random waypoint considered harmful,' in Proc. IEEE INFOCOM, San Francisco, USA, Mar. 2003
  29. L. Kleinrock and J. Silvester, 'Optimum transmission radii for packet radio networks or why six is a magic number,' in Proc. IEEE National Telecommunications Conf, Dec. 1978
  30. H. Takagi and L. Kleinrock, 'Optimal transmission ranges for randomly distributed packet radio terminals,' IEEE Trans. Commun., vol. 32, no. 3, pp. 246-257, 1984 https://doi.org/10.1109/TCOM.1984.1096061
  31. G. Ferrari and O. K. Tonguz, 'Minimum number of neighbors for fully connected uniform ad hoc wireless networks,' in Proc. IEEE ICC, Paris, France, June 2004
  32. E. M. Royer, P. M. Melliiar-Smith, and L. E. Moser, 'An analysis of the optimum node density for ad hoc mobile networks,' in Proc. IEEE ICC, Helsinki, Finland, May 2001
  33. F. Xue and P. R. Kumar, 'The number of neighbors needed for connectivity of wireless networks,' Wireless Networks, vol. 41, no.2, pp. 169-181, 2004, Kluwer
  34. Qiao, S. Choi, A. Jain, and K. S. Shin, 'MiSer: An optimal low-energy transmission strategy for IEEE 802.11a/h,' in Proc. ACM MobiCom, San Diego, USA, Sept. 2003
  35. B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, 'OAR: An opportunistic auto-rate media access protocol for ad hoc networks,' in Proc. ACM MobiCom, Altanta, USA, Sept. 2002
  36. H. Lundgren, E. Nordstrom, and C. Tschudin, 'Coping with communication gray zones in IEEE 802.11b based ad hoc networks,' in Proc. Int. Workshop on Wireless Mobile Multimedia (WoWMoM), Atlanta, USA, Sept. 2002
  37. B. Awerbuch, D. Holmer, and H. Rubens, 'High throughput route selection in multi-rate ad hoc wireless networks,' in Proc. First Working Conf. on Wireless On-demand Network Systems (WONS), Madonna di Campiglio, Italy, Jan. 2004
  38. [Online]. Available: http://www.olsr.org