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Position Location of Mobile Terminal in Wireless
MIMO Communication Systems

Ji Li, Jean Conan, and Samuel Pierre

Abstract: A promising approach to improve the performance of
mobile location system is the use of antenna arrays in both trans-
mitter and receiver sides. Using advanced array signal processing
techniques, such multiple-input multiple-output (MIMO) commu-
nication systems can offer more mobile location information by ex-
ploiting the spatial properties of the multipath channel. In this pa-
per, we propose a novel approach to determine the position of mo-
bile terminal based on estimated multipath signal parameters us-
ing only one base station in MIMO communication systems. This
approach intends to minimize the error occurring from the esti-
mation of multiple paths and gives an optimal estimation of the
position of mobile terminal by simultaneously calculating a set of
nonlinear location equations. This solution breaks the bottleneck of
conventional mobile location systems which have to require multi-
lateration of at least three base stations.

Index Terms: Least squares, mobile location, multipath, multiple-
input multiple-output (MIMO), Taylor series.

I. INTRODUCTION

Wireless communication has enjoyed explosive growth over
the past decade. With the increasing need for location-based ser-
vice and applications, mobile positioning will be one of the most
exciting features of the next generation wireless systems. With
this technique, a mobile device can either gather the information
about its position or can be localized from elsewhere [1].

One of the most important applications of mobile positioning
is personal safety, such as in the emergency localization (E-911
service); automatic location identification (ALI) will be a sys-
tem requirement for wireless operators in the near future. Mo-
bile location systems can also be used by advanced user hand-off
schemes, and potentially many user services for which a global
positioning system (GPS) is impractical. Other applications are
automatic billing and fraud detection for cellular providers, acci-
dent reporting, law enforcement, cargo tracking, and intelligent
transportation systems [2], [3].

MIMO technology is the most promising candidate for next
generation wireless communication systems. With multiple
transmit and multiple receive antennas, it can achieve higher
data rate, without increasing the total transmission power or
bandwidth, compared to the single antenna counterpart [4].
However, how to implement the location of mobile device in
MIMO system remains an open area of research. As the exist-
ing location methods are mainly based on multi-lateration tech-
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niques, a particular mobile location technique needs to be devel-
oped to fully take advantage of MIMO channel characteristics.

In a wireless MIMO communication system, with both trans-
mit and receive side use multiple antennas, the spatial character-
istics of multipath in MIMO communication system can be ex-
ploited. It is then possible to estimate channel parameters such
as angle of arrival (AOA), angle of departure (AOD), and delay
of arrival (DOA) in a multipath environment by using adaptive
array signal processing techniques [5], [6].

In this work, by using estimated MIMO channel parameters
in a multipath environment, we propose a novel approach to cal-
culate the position of mobile terminals, involving an iterative
nonlinear least squares (LS) solution. We demonstrate its via-
bility in mobile and sensor position location with numerical ex-
periments. To our knowledge, no similar results for the mobile
location technique for MIMO communication systems are avail-
able in previously published works.

The paper is organized as follows. In Section II, we give an
overview of wireless position location systems. In Section III,
we briefly describe the MIMO communication system under
consideration of mobile location. Section IV proposes the hy-
brid DOA/AOA/AOD location method for MIMO systems. In
Section V, the analysis of the proposed location method is given,
and the Cramer-Rao lower bound (CRLB) is derived. The per-
formance of the proposed method is evaluated via computer sim-
ulation in Section VI. Conclusions are given in Section VII.

II. OVERVIEW OF WIRELESS POSITION LOCATION
SYSTEMS

Wireless position location (PL) systems focus on providing
geographic information system (GIS) and spatial information
via mobile and base units. However, in traditional PL system,
the accuracy is limited by the possible directivity of the measure
aperture or array, as well as by multipath fading and shadowing.

A. Classification of Wireless PL System

Location enabled technologies that have been proposed to
date fall into three broad categories: Network-based, handset-
based, and hybrid in nature.

A.1 Handset-Based Technologies

Handset-based technologies use the radio navigation sys-
tem provided by the satellites of the U.S. government-operated
GPS. GPS-based technology utilizes an embedded GPS receiver
in the handset to triangulate its position from at least three GPS
satellites. GPS-based technology is well suited for many out-
door local positioning tasks. However, GPS has its shortcomings
in dense urban areas and inside buildings. Unfortunately, this
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Fig. 1. The block diagram of a wireless PL system.

is exactly the area where heavy, strongly-growing local wire-
less data transfer takes place. Moreover, it has other drawbacks
such as increased cost, size, and power consumption of mobile
devices. Because of the drawbacks of non-network-based tech-
nologies, cellular carriers generally favor the use of a network-
based approach, provided the necessary infrastructure is not pro-
hibitively expensive.

A.2 Network-Based Technologies

Network-based technologies use the cellular network to de-
termine the location of the mobile devices. The network-based
location technologies are based on the parameters of the trans-
mission such as signal propagation time and angle of arrival.
These technologies typically require considerable expenditure
on the network infrastructure but do not require any modifica-
tions on the handset.

A.3 Hybrid Technologies

Network-assisted GPS hybrid technologies are expected to
deliver the accuracy of GPS and overcome the drawbacks of
GPS associated with its line-of-sight requirement, and power
consumption by shifting significant processing load from the de-
vice to the network.

In cellular systems, PL technology typically use base stations
(BSs) or other devices to measure radio signals from the mobile
station (MS). The general structure of a wireless PL system is il-
lustrated in Fig. 1. Each part of this structure will be investigated
in detail in following sections.

B. Location Measurement and Principles

The location measurement unit measures the parameters need
for location estimation from the received signal corrupted with
additive noise, multipath, and/or non-line-of-sight (NLOS) er-
rors. Classical parameters include signal strength, direction of
arrival, and propagation time or delay of received signal. The
measurement principle of radio position systems can be classi-
fied into two broad categories: Direction finding (DF) and range
based systems. DF systems estimate the position of a mobile
source by measuring the AOA of the source’s signal, using pa-
rameter estimation methods of array signal processing. Range
based PL systems may be categorized as received signal strength
(RSS) systems since they are mainly based on propagation-loss
equations, and propagation-time based systems. The second
type of systems can be further divided into three different sub-
classes: Time of arrival (TOA), round trip time of flight (RTOF),
and time difference of arrival (TDOA) [7]. The detailed mea-
surement principle will be present in the following section.

B.1 Direction Finding Systems
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Fig. 2. AOA-based wireless location.

Direction finding systems use antenna array at the base station
to determine the direction from which the mobile’s signal ar-
rives. The AOA measurement restricts the location of the source
along a line in the estimated AOA. When multiple AOA mea-
surements are made simultaneously by multiple base stations, a
triangulation method may be used to form a location estimate
of the source at the intersection of these lines-of-bearing (LOB).
Signal AOA information, measured at BSs with an antenna ar-
ray, can be used for positioning purpose as in Fig. 2. MS is at
the intersection of several direction lines corresponding to AOA
measurements.

Numerous techniques have been developed to determine the
AOA of signals incident on an antenna array [8], [9]. These
methods typically are based on the phase difference of the sig-
nal at adjacent elements in the antenna array since this phase
difference is proportional to the angle of arrival of the incoming
signal.

B.2 Range-Based Systems

B.2.a RSS-Based Wireless Location Systems. RSS are based
on propagation-loss equations. The free space transmission loss
for instance is proportional to 1/r? (r is the propagation dis-
tance). The major advantage of RSS systems is the fact that
most modern radio modules already provide a received signal
strength indicator (RSSI). Also the BER can be used to estimate
the signal attenuation. However, for RSS based location sys-
tems, high accuracy is difficult to obtain. In a multipath propa-
gation environment, variations in the RSS can be 3040 dB over
distances on the order of an half wavelength. The power control
mechanism employed in cellular systems will impose another
difficulty in estimating the location via RSS measurements [10].

B.2.b Propagation Time-Based Wireless Location Systems.

Due to their physical restraints, AOA and RSS systems only de-
liver moderate position accuracy, whereas the propagation time-
based measurements can achieve higher accuracy and does not
require complex antenna arrays. The perhaps most intuitive and
accurate approach for local position measurement is to measure
the RTOF of the signal traveling from the transmitter to the mea-
suring unit and back. Obviously, the time-of-flight can then be
used to calculate the distance. In TOA systems, the one-way
propagation time is measured and the distance between measur-
ing unit and signal transmitter is calculated. However, there’re
two main drawbacks of these two approaches: The transmitted
signal must be labeled with a time stamp in order for the receiver
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Fig. 3. TDOA-based wireless location.

to discern that the signal has traveled, and precise time syn-
chronization of all involved fixed measuring units and mobile
units is required. Therefore, TDOA method is a more practical
means of location for commercial systems. The TDOA system
determines the MS position based on trilateration technique, as
shown in Fig. 3. In TDOA systems, the time-difference of ar-
rival of the signals received in several pairs of measuring units
is evaluated. The benefit of TDOA systems is that it is only nec-
essary to synchronize the measuring units. This synchronization
is done using a backbone network or a reference transponder in
a known position.

C. Location System Controller

Depending on the location scheme used, the location mea-
surement unit passes measured information such as AOA, TOA,
or TDOA to the location system controller. The location system
controller gathers all the information and selects the measure-
ments to be used in the location estimator. The error statistics
of each measurement is a major concern for choosing the mea-
surements. The decision to select or reject a measurement can
be based on a number of factors.

C.1 NLOS Error Mitigation

Extensive research on NLOS mitigation techniques have been
carried out in the past, as evidenced by the literature [11]-[13].
Most of these techniques assume that NLOS corrupted measure-
ments only consist of a small portion of the total measurements.

C.2 Hearability

Hearability is the ability of receiving signals from a sufficient
number of BSs simultaneously at a sufficient power level, and it
is evaluated by the number of BSs that an MS can detect or hear.
The higher the value, the better is the hearability [14].

D. Location Estimator and Algorithms

The location estimator takes the measurement from the loca-
tion system controller, and estimate the MS location. A straight-
forward approach uses a geometric interpretation to calculate
the intersection of lines for AOA, circles for TOA, and hyperbo-
las for TDOA. This approach, however, becomes difficult if the
lines or curves do not intersect at a point due to measurement
erTors.
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Fig. 4. Diagram of a MIMO wireless transmission system.

The traditional techniques for position location such as di-
rection finding and ranging are based on trilateration/multilat-
eration system [15]. Trilateration/multilateration PL systems
utilize measurements from three or more BSs to estimate the
2-dimensional (2D) location of the mobile transmitter. In a tri-
lateration hyperbolic ranging PL system, two range-difference
measurements produced from three base stations can provide
the position of the mobile target, additional measurements from
more BSs can be used to reduce the ambiguities due to multi-
path, signal degradation, and noise [16], [17]. To improve po-
sitioning accuracy, it is better to use as much information as
possible. Hybrid solutions are proposed by simply combining
TDOA and AOA measurements [15], [18].

III. POSITION-LOCATION IN MIMO SYSTEMS

A. Introduction to MIMO Communication Systems

MIMO wireless systems can be viewed as an extension of
the so-called smart antennas. Such a system is illustrated in
Fig. 4. MIMO systems use multiple transmit and receive an-
tennas to exploit the spatial properties of the multipath channel,
thus offer a new dimension to enable enhanced communication
performance. The idea behind MIMO is that the signals on the
transmit (Tx) antennas at one end and the receive (Rx) antennas
at the other end are “combined” in such a way that the qual-
ity (BER) or the data rate (bps) of the communication for each
MIMO user will be improved. Such an advantage can be used
to increase both the network’s quality of service and the opera-
tor’s revenues significantly. A key feature of MIMO systems is
the ability to turn multipath propagation, traditionally a pitfall
of wireless transmission, into a benefit for the user.

B. The MIMO Propagation Channel Model

The MIMO channel models can be divided into the non-
physical and physical models. The non-physical models are
based on the channel statistical characteristics using non-
physical parameters. In general, the non-physical models are
easy to simulate and provide accurate channel characterization
for the situations under which they were identified. On the other
hand they give limited insight to the propagation characteristics
of the MIMO channels and depend on the measurement equip-
ment, e.g., the bandwidth, the configuration and aperture of the
arrays, the heights and response of transmit and receive antennas
in the measurements. The influence of the channel and measure-
ment equipment on the model can not be separated. Another cat-
egory are the physical models. In general, these models choose
some crucial physical parameters to describe the MIMO propa-
gation channels. Some typical parameters include AOA, AOD,



LI et al.: POSITION LOCATION OF MOBILE TERMINAL IN WIRELESS MIMO ...

Scatterer

™ Ms array
broadside

MS direction of travel

Fig. 5. A specular MIMO multipath propagation channel model.

and DOA.

In order to jointly estimate multipath channel parameters,
we shall consider the following conditions on the mobile radio
propagation scenario: '

e The MIMO multipath environment is modeled by a dis-
crete number of rays, each parameterized by a delay, com-
plex amplitude (path gain), angle of arrival and angle of
departure.

e The source signals are digital sequences that are linearly
modulated by known pulse shape functions.

e The parameters such as AOD, AOA, and DOA are not
changing significantly from each time slot to the next. It
implies that the channel has quasi-static property.

e The source signals are transmitted and received by a nar-
rowband phased array.

e The data transmitted by the antennas is sampled at or
above the Nyquist rate.

In this work, we consider a simplified 3GPP MIMO channel
model [19] which is a specular multipath propagation channel
model illustrated as Fig. 5. In this model, we assume there is
only one path that goes through each scatterer. Each path has its
own AOD, AOA, and the delay between each pair of paths can
also be measured.

C. Parameter Estimation for MIMO Systems

Parameter estimation has received a significant amount of at-
tention over the last several decades, because of its widespread
applications and the difficulty of obtaining the optimum esti-
mator [20]. The estimation of parameters such as DOA, AOA,
etc., for a known signal is the central function for PL sys-
tems [21]-[23]. The conventional wireless communication sys-
tem can only estimate the DOA or AQA of the received signal in
order to perform position location method through trilateration
or multilateration of more than two BSs. The existing methods
for estimating the AOA or DOA of the received signal in a wire-
less communication system are based on transmitting a known
signal, such as a pulse, and performing correlation or parametric
estimations separately [8], [9]. Unfortunately, in many cases,
the received signal is composed of multiple reflections having
different AOAs and DOAs, which cause the signal to overlap in
either the time or space domain. Thus, the classical methods
for estimating the AOA and DOA are no longer optimal in such
situations [10], [24], [25].

In smart antenna systems, the joint estimation of the AOA and
DOA of the received signal is possible through some advanced

array signal processing techniques. In [26] and [27], joint angle
and delay estimation (JADE) algorithms for smart antenna sys-
tems have been proposed for more robust estimation. In a mul-
tipath environment, the direction of received signals and associ-
ated delays of the path do not change quickly, so that it possible
to estimate these parameters by extending the classical methods
to the joint space and time domain. However, multiple base sta-
tions are still required in this case except with high-speed mov-
ing MS.

In wireless MIMO systems, it is possible to estimate more
channel parameters in a multipath environment using adaptive
array signal processing techniques. The estimation methods for
multipath signal parameters such as AOA, AOD, and DOA have
been proposed in [5] and [6]. With additional AOD informa-
tion in MIMO system, it motivates us to estimate the position
of mobile terminal from signals of multipath. If we estimate the
TDOA between the first path and other paths, along with the
estimation the AOD and AOA for each path, a set of nonlinear
equations whose solution gives the 2D coordinates of the source
can be defined. As mentioned earlier, solving the set of non-
linear equation can be performed by linearization. Therefore,
we expect to develop a novel hybrid TDOA/AOA/AOD method
which is extended from Taylor series [16] and TSLS [17] so-
lutions to give an optimum position of mobile terminal using
single BS.

D. The Benefit to PL in MIMO Systems

With the joint parameters estimation of AOA/AOD/DOA, the
MIMO techniques will bring the following benefits to PL. meth-
ods:

e Ifthereceived signal arrived in same direction, the conven-
tional estimation algorithm can not distinguish their differ-
ence, but with joint estimation, the two signals with same
direction can be separated by their delays.

e Unlike the traditional methods, the joint estimation
method can work in cases when the number of paths ex-
ceeds the number of antennas. Thus, it can resolve more
multipath than the number of array elements.

¢ Since more parameters (AOA, AOD, and DOA) can be ex-
ploited in MIMO channel, it is possible to locate the po-
sition of mobile terminals using only one BS in MIMO
communication systems.

e The location estimation seems also possible at MS side
which is not realistic in traditional communication system.

IV. THE PROPOSED HYBRID TDOA/AOA/AOD
LOCATION METHOD FOR MIMO SYSTEM

A. System Model for Position-Location

The location estimation model for MIMO multipath propa-
gation channel is illustrated in Fig. 6. The proposed algorithm
intends to minimize the error occurring from the estimation of
multiple paths and give an optimal estimation of the MS posi-
tion by simultaneously calculating a set of nonlinear position
equations.
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A.]1 Line-of-Sight Scenario

If we have a line-of-sight path available, the position of mo-
bile station can be calculated easily, then we will have

0; =6; — 61, ¢ = ¢ — 1
' TlSiHQSQ "
" s e "

/ 1
Ty = T’l: + 7‘1:

_ r1sin@;
= S+ ) M

where 6; and ¢; are the angles of departure and arrival for the
ith path from the mobile station to the base station, respectively.
The angles 6; and ¢; are respectively the AOD and AOA for
LOS propagation path. As depicted in Fig. 6, r; is the total
length of the ith path, while r; and ] are the lengths of the seg-
ments forming the ith path, and r; is the LOS distance between
MS and BS, respectively.
Thus, we could have the LOS distance between MS and BS

I sinf; +sing; 1
PR Usin(8]+ )

where 71 = 7; + 7 — r; is the realtive distance between ith
path and LOS path. And the position of MS will be

)

Ty = Zp — 71 COS O

: 3)
Ym = Yp — 71 8infy.
In this case, we found there is only one BS station required to
give an estimation of the position of MS, because the multiple
antennas or antenna array at MS site provide more information
for location position. The conventional trilateration method us-
ing multiple BSs is not necessary for MIMO system.

A.2 Non-Line-of-Sight Scenario

However, in practice, the LOS is not always available or can
not be distinguished easily. Moreover, the measurements of
DOA, AOA, and AOD always contain errors due to the hos-
tile wireless propagation environment. As illustrated in Fig. 6,
let (zb,ys), (Tm,Ym), and (z;,y;) denote the true position of
respectively the BS, the MS and the ith scatterers. The values
of (%, ym) and (z;, y;) are not known in practice and must be
estimated.

From Fig. 6, it is straightforward to obtain ; and ¢; as a
function of the mobile station and the scatterers

Oi(xm; Ym, T, yl) = arctan (yl_—%n>
Ti — Tm

@

(z)i(wm:ymaxi’yi) = arctan (y_l__yb>
Tr; — Tp

for¢ = 1,.-., N, where N is the total number of paths. Simi-
larly, with ¢ defined as the signal propagation speed, the TDOA
can be computed

Ti(xm,ym,:ci,yi): (7’1'-7‘1)/0, i=2,"',N (5)
where 7; = r; + r;, with
7y = (@i — )2 + Wi — Ym)?
V(@i = 2m)? + (v = Ym) ©

ri =/(@ — 26)2 + (0 — w)2.

The objective is to determine the unknown position (Z.m,, Ym)
from the exact position (zs, ) and uncertain measurements of
éi, ¢A51-, and 7; (the time delay between paths are known). These
assumptions are realistic as several methods have been recently
proposed to measure 6;, ¢;, and 7; in MIMO communications
(51, [6].

Statistically, the measurement contain errors

7= Ti(xMaym)xivyi) + g,

éi = 61' (mma Ym, Ti, yl) + nei (7)

(zi = ¢i(Tm, Yms Ti, Yi) + T

where¢ = 1,---, N for @ and cf)i,i =2,---,N for 7. n,,,ng,,
and ng, are the measurement errors of TDOA, AOA, and AOD,
respectively.

When the number of path V > 4, then we have (3N —1) mea-
surements and (2N + 2) unknown parameters, and the system
is over-determined. It is then possible to apply the least-squares
method to this nonlinear estimation problem.

B. A Generic Nonlinear Location Estimation Method

The process of location estimation is computing a value for an
unknown state vector from a related measurement vector. The
value or estimate will in general be in error because of measure-
ment noise and “model” errors. In most estimation problems,
knowledge of the probability density function of the state para-
meter to be estimated was always required prior to the measure-
ment parameter. However, this information is not available in
many practical cases. The state parameter to be estimated may
not even be a random variable. One approach to such problems is
to interpret the lack of knowledge concerning the a priori prob-
ability density function of the parameter in the sense that the
density function is implicitly assumed to be uniform (or approx-
imately so over a very wide range).

However, it is often desirable to use an estimation concept
free of such assumptions. The well known maximum likelihood
estimate of a parameter is that value which will make a given
measurement most likely, i.e., the parameter value which causes
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the conditional probability density induced on the measurements
to have its greatest maximum at the given measurements.

More precisely, let x be the state vector to be estimated (in
general an n-vector). Let 2(i),1 < i < k, be a sequence of
measurements (here we assume each z(7) is scalar) which are
generated by the functional relationship

z(1) = hi[x,v(®)], =1, k (®

where each v(%) is representing measurement noise or other ran-
dom interference which tends to make it possible to infer the
true value of x from the observation z(i). Assuming now that
the conditional probability density p[z(1), - - -, z(k)|x] is known,
or has been derived from (8) and the statistics of v(¢), we may
define the “likelihood function”

(x) = plz(1), -

where the conditional probability density p[z(1), - - -, z(k)|x] is
now assumed to have been evaluated at a given received mea-
surement sequence, z(1), - - -, z(k).

The maximum likelihood (ML) estimate of x, denoted by X,
is now the valtue of x which maximizes (x) which was the con-
ditional probability density p[z(1), - - -, z(k)|x] evaluated for the
given received measurements.

Let the observation noise v(7) in (8) be additive and represent
a zero-mean independent gaussian random sequence. Then, we
have

2(6) = filx) +0() i =1,k (10)

and
E[u()] =0
E@)v(i)T] = QU, ) A — i)

where Q(j, ¢) is a sequence of known covariance matrices, each
covariance matrix representing the covariance among the com-
ponents of v(4).

It is desired to determine the maximum likelihood estimate
of the parameter x. the likelihood function, i.e., the conditional
probability of z(1), - - -, z(k) given x is given by

an

k
l(x) = Cexp —-;— Z[Z(i) — fiGNTQTE, i)[(0) — fi()]
i=0 (12)

where C (which involves factors of v/27 and |Q(%,¢)|) is a con-
stant independent of x. From the form of (12), we see that max-
imizing {(x) leads to minimizing the quadratic function

k
min Z[Z(i) — HETQTE, D) [23) — fi(x)]. (13)
Let
z1 fi(x) vy
zZ= , f(x) = ,andv = | (14)
2k fk(x) Vg
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We get the following expression in matrix form:

z = f(x) + v. (15)

If £f(x) is a linear function, f(x) = Gx, where G is a con-
stant matrix. The operation specified by (13) define the method
of weighted least squares for estimating the parameter x when
the observation consists of a discrete sequence. If Q(z,¢) was
identity matrices, then we would have the ordinary least squares
problem. In the ordinary LS problem, we simply choose I(X)
such that the expected observation (ie., z2(¢) = f;(x) which
ignores the noise v(4)) comes as close as possible to the actual
measurement in LS sense of (13). Thus, when the measurement
errors are small, the ML estimator gives an LS solution

x=(GTQ'G)'GTQ 'z (16)
It was shown above that the method of ML and LS yield the
same results in the special case of additive white gaussian noise.
Notice that a stochastic optimization problem characterized by
ML estimation is in fact replaced by a deterministic optimization
problem defined by (13).

For a nonlinear f(x), we have to linearize it in order to de-
termine a reasonably simple estimator. The most straightfor-
ward linearization approach is to use the Taylor Series expan-
sion. Consider a nonlinear state/measurement model in (15), we
have measurement z and want to estimate x. In addition, the
k-dimension vector function f(-) is assumed to be defined and
“well-behaved” in particular, the first derivatives of £{-) compo-
nents with respect to x exists. Let x* be an arbitrary estimate
of the true state vector x, then a weighted sum of squares of
measurement residual J is defined by

J=[z—f(x)]TQ !z - £(x*)). (17)

The objective of this nonlinear least squares estimation prob-
lem can be described as follows: For the measurement/state
model of (15) and for the residual performance index given by
(17) with Q1, find that estimator x* for which J in (17) is
minimized.

The solution to this nonlinear problem will be an iterative one
using perturbations. More specifically, the global properties of
f(-) will not be involved—it will be assumed that an initial guess
(usually xg) for the required minimizing value in the problem is
in a convergent neighborhood of this minimizing value. Thus,
we define

Ret1 = Kp + 0k, K=0,1,- - (18)
as an iterative sequence for optimal estimate X:
X = lim ZXg. (19
k—00

Criteria for stopping the iteration in a finite number of steps
will be introduced. For a general (k + 1)th step in the iteration,
the value of the performance index J in (17) is

J(Rer1) = [2 — £(Zn+1)]T Q7 z — £(Rie1)]-

Combining (18) and (20) gives a perturbation equation in the
performance index; i.e., the performance index value changes

(20)
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from J(Xx) to J(Xg41) if the estimator value is changed from

X to X1 A perturbation of J(%X,41) — J(Xx) results from a
perturbation of X1 —Xg = d5. These are related by combining
the equations
JGpi1) = [z — £(&e +06)]7Q 7z — f(Re + k). 21
Now, we use linear perturbations by retaining only the first-
order terms in an expansion for f(-)

- N of
f(%k + k) = £(%i) + < lx=%, Ok- (22)

X

- We then take that
f(Xi + 0x) =~ £(%kk) + Awdy (23)
where the m X n matrix Ay is defined by
of

Ap = —|x=x,-

B = g bes (24)

Solving (21) gives the sought-after iterative solution algorithm
for the nonlinear least squares problem

k1 = %6 + (ATQ7TAL) TATQ Mz — f(%:)]. (25)
In a practical application of the iterative algorithm, the iteration
would be stopped after a finite number of steps and J§ would
not in general be zero. An error is thus introduced into the es-
timate and is held to acceptable levels with iteration-stopping
criteria discussed in conjunction with applications of iterative
least squares in the text.

C. Solution to Hybrid TDOA/AOA/AOD Location Equations

In this section, we derive a location estimator to solve the
nonlinear TDOA/AOA/AOD equations for the MS location. Let
X = [Tm, Ym, T1, Y1, TN, yn] T denote true positions of mo-
bile station and scatterers, and we define f the (3N — 1) column
vector valued function according to (4) and (5):

Ti(.’Em, Ym, Ts,s yz)

f(x) = 0i(zm,Ym, T, ¥i) (26)

¢i(mm7y7na Ty yl)

The estimation model of the unknown (2N + 2) column vector
x in the presence of additive Gaussian noise is

z=f(x)+n @7
wherez = [# - 6; - - ¢]T are (3N — 1) measurement values
[18]. And the measurement noise n = [n,-- ng, - ng,]" is
assumed to be a multivariate random vector with a (3N — 1) x
(3N — 1) positive covariance matrix

Q = E{(n - Efn])(n - E[n])"]. (28)

If the covariance matrix Q has zero mean, it can be further ex-
pressed as

Q 0 o°
Q=10 Q O (29)
0 0 Q.

where Q) is the covariance matrix for TDOA measurement er-
rors, Qg and Q,, are the covariance matrix for AOD and AOA
measurement errors, respectively.

As shown in (24), we could have the gradient matrix [25]

df1(x) df1(x)
G2 OxaN +2
Ac=| . (30)
9fan—1(x) Sfsn—1(x)
Oz OTaN 42

where the gradient matrix Ay isa (3N — 1) x (2N + 2) matrix.

Assume AgQ_lA;c is nonsingular, similar to (25), the iter-
ative nonlinear LS solution of the location estimator gives the
estimated x for (k + 1)th iteration

Kp1 =Xk + (AT Q7IAL)TTATQ z — £(x2)]. (3D

Therefore, given a set of measured multipath signal parame-
ters, such as TDOA between each pair of path, and AOD and
AOA for each path, along with a previous estimate of the mo-
bile’s location and angles of departure and arrival of multipath
signals, it is possible to determine values of &, = Xp+1 — Xk,
to update the estimated position of MS and scatterers to more
closely approximate the actual value. This process is repeated
until the value of d; becomes smaller than a desired threshold,
indicating convergence.

Now, let’s summarize the procedure to obtain X from (31) for
the proposed method as follows:

1. Choose xg, initial guesstimate.

2. Linearize f about xg and obtain A matrix.

3. Compute residuals [z — f(x )] and then compute the X.

4. Check for the orthogonality condition:

ALz ~ £(x)] [x=2= 0.

5. If the above condition is not satisfied, then replace and
repeat the procedure.

6. Terminate the iterations when the orthogonality condition
is at least approximately satisfied.

V. ANALYSIS OF THE PROPOSED LOCATION
METHOD FOR MIMO SYSTEMS

Suppose there are N(> 4) multiple paths available between
BS and MS with 2D array layout for determining the MS po-
sition, we have a set of over-determined nonlinear location
equations. Because of measurement errors, the solution is not
unique.

A. Cramer-Rao Lower Bound (CRLB)

The CRLB provides a lower bound on the variance of any un-
biased parameter estimators. Hence, it is of interest to compare
the proposed estimator with the optimum.
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The CRLB of the mobile location problem is derived in the
Appendix. It is given by

o (o)

(32)
where 0f (x) /Ox is found to be the true value of Ay in (30).

B. Advantages of Proposed MIMO PL Method

The proposed hybrid TDOA/AOA/AOD location method for
MIMO communication system exploits the spatial properties of
the multipath channel, and then it can resolve more signal para-
meters than traditional PL. methods. It has the following advan-
tages:

1. No time synchronization required: All the propagation
time-based PL systems require precise time synchroniza-
tion of all involved measuring units. For the proposed
method, since only one base station is involved in the posi-
tion location, the time synchronization is straightforward.

2. No multilateration: Most position location approaches re-
quire measurements at multiple receiving stations. This re-
quirement is counter to the cellular network design that
assigns one base station to serve a given user. Our new
method uses single base station to perform position loca-
tion in wireless MIMO communication systems.

3. No LOS signal required: Most PL systems require LOS
communication links. However, such direct links do not
always exit in reality because of the intrinsic complexity
of mobile channels. In this work, the proposed method
can not only work perfectly without LOS signal, but also
find the LOS signal.

4. Less network traffic for PL system: Since only one base
station is required for location estimation, it will generate
less location update information in the whole PL system.
Thus, the overall network traffic related to PL can be re-
duced. Moreover, PL information collection by the net-
work is facilitated.

VI. SIMULATIONS AND RESULTS

The performance of the proposed mobile location method for
MIMO communication system is investigated by computer sim-
ulations. The geometric scatterers arrangement in Fig. 7 is used
as an example which is a simplified MIMO channel propagation
model based on 3GPP standard [19]. In this model, we assume
that the signal follow N paths and that along the ith path, the
signal is only scattered by only one obstacle at the planar lo-
cation (z;,y;). For the two dimensional array MS and BS lay-
out, we have BS much higher than MS and most scatterers. For
simplicity, we assume that the signals and noises are Gaussian
random process. The TDOA covariance matrix Q; is similar
to [17] which has TDOA variance o} for diagonal elements and
0.502 for all other elements. The TDOA estimates are simulated
by adding to the actual TDOA’s correlated Gaussian random
noises with covariance matrix given by Q;. The AOD covari-
ance matrix Qg and the AOA covariance matrix Q, have AOD
variance 02 and AOA variance o2 as their diagonal elements,
respectively.

261

251

Fig. 7. Geometry arrangement of scatters between MS and BS.

Table 1. Positions of all scatterers.

N1 |2 |3 |4]|]5|6|7]|8 9|10
z| 7|3 ([15]14|12]8]|12] 4
y|15|16| 8 | 6|14 3|5 |12 (3| 8

(o8
N

The Taylor series estimator is used to derive the MS location.
The measured AOD and AOA information are used as initial
guess of AOD and AOA, and location error (about 5 percent
of distance between MS and BS) is added to true MS location
as initial guess of MS position. Simulations show that at most
five iterations are required for Taylor series solutions to con-
verge. A validity test at each step is implemented. We compute
det{AT Q™! Ay] and reject the input data or the position guess
if this number is too small. To detect the failure of convergence,
we compute the trace of (AT Q~1A,)~! at the end of each it-
eration, and after five steps or so, start to compare it with that
of the previous step. If the ratio is not much less than unity,
the process is not converging. The squared error of MS location
estimation is derived at the end of iteration, as a useful check
on the validity of the solution. The mean square error (MSE)
is obtained from the average of 10,000 independent runs. For
each simulation run, the noise corrupted measurements are used
where the noises are generated according to the standard devia-
tion of TDOA, AOA, and AOD. The iterative computation time
of each simulation run is less than 0.01 second.

The position of all scatterers are given in Table 1 with MS at
position (—12, —3), and BS at position (24, 22). The distance
unit is 100m in this work. The squared error, MSE and CRLB
values use the same unit.

In Fig. 8, the squared location error estimations are compared
as the number of scatterers increases from 4 to 10. The TDOA
noise standard deviation is set to be 1/0.0005/c, whereas the
AOD and AOA noise standard deviation is 0.3 degree and 0.1
degree, respectively. It is clear that the proposed method per-
forms better with more scatterers since there are more location
equations than unknown parameters. For example, if N = 4,
we have 11 location equations and 10 parameters to estimate;
however, as N = 10, we have 29 location equations and 22
parameters to estimate. Thus, the performance improvement in-
troduced by additional scatterers is significant.

Table 2 compares the MSE errors with the CRLB. The first
two diagonal elements from (32) are used to compute the CRLB
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Fig. 8.  Squared location error with different scatterers’
arrangement.
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Table 2. Comparison of MSE error with CRLB.

Multipaths | MSE | CRLB
N =4 1.4479 | 1.1869
N=5 0.9775 | 0.8781
N=6 0.7254 | 0.6147
N=7 0.6214 | 0.5319
N =38 0.6082 | 0.5247
N=9 0.4667 | 0.4398
N =10 0.4319 | 0.4100

MSE location error

AOD noise 10log(c,)

TDOA noise 10log(ca,)

Fig. 9. MSE with different TDOA and AOD noise measurement.

for MS location estimation. The standard deviation of TDOA,
AOA, and AOD are the same as Fig. 8. From the results, we can
see that the position of MS can be estimated with high accuracy,
and MSE error estimation of the proposed method approaches
CRLB very closely.

In Fig. 9, we show a 3D illustration of the MSE estimation
with different TDOA and AOD noise measurement, whereas the
AOA noise standard deviation is set to be 0.1 degree. The sim-
ulation results show that the maximum value of MSE is lower
than 2. Similarly, we show a 3D illustration of the CRLB in
Fig. 10.

VII. CONCLUSIONS

For conventional mobile location methods, multi-lateration
of several BSs is required to give location estimation. In this
work, we proposed a novel mobile location estimation method

AQD noise 10log(c,)

-90
-130 -g5 TDOA noise 10log(co,)

Fig. 10. CRLB with different TDOA and AOD noise measurement.

for MIMO communication systems. The advantage of MIMO
systems is to use multiple antennas at both sides, thus multi-
path will be utilized to enhance overall performance of wireless
communication. Moreover, it is also possible to estimate more
parameters of multipath signals such as AOA, AOD, and TDOA.

Using measured multipath signal parameters in MIMO sys-
tems, such as AOD and AOA for each path, as well as TDOA
between each pair of path, an over-determined system can be
established with a set of nonlinear location equations. The pro-
posed hybrid TDOA/AOA/AOD location method utilizes Tay-
lor series linearization to give a iterative nonlinear LS solution.
With an initial guess of the mobile’s position, the least-squared
difference between true MS position and previous estimation of
MS position will be minimized. This process is repeated iter-
atively until the difference under a desired threshold. The per-
formance of the proposed method has been evaluated through
computer simulation. The Cramer-Rao lower bound is also de-
rived.

This method is able to determine the position of the mobile
station so as to minimize the measurement noise by using single
base station. It would be a revolution for PL problems by takeing
full advantage of the power of MIMO communication system
for multipath dispersion.

APPENDIX: CRAMER-RAO LOWER BOUND

The CRLB is a lower bound on the variance of any un-
biased estimator. We now derive the CRLB for the pro-
posed MIMO Hybrid TDOA/AOA/AOD method. The vector
of TDOA/AOA/AOD measurements z in (15) is asymptotically
zero mean Gaussian with covariance matrix given by Q, the con-
ditional probability density function is

exp {~3(2— £(x))7Q " (2 - £(x))}
CHRRIE '

P(z|x) = (33)

If the MIMO hybrid measurement errors are small so that the
bias square is insignificant compared with the variance, the
CRLB of x is given by [6]

o~ {r[(Zmrun) (Zmren) ]} oo
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From vector calculus, if zisa K x 1 vectorand Aisa K x K
symmetric matrix, then

i(zTAz) = 2Az.

dz (33)
Thus, the partial derivative of In P(z|x) with respect to x is
g ofT(x) 4
-a;lnP(zlx) = _TQ (z — f(x)). (36)
Hence,
OfT(x) _,0f(x)\ '
&= 1
( ox Q ox ) S
A (x)

where 5~ is found to be the true value of Ay in (30).
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