Comparison Radiation Dose of Z-Axis Automatic Tube Current Modulation Technique with Fixed Tube Current Multi-Detector Row CT Scanning of Lower Extremity Venography

하지 정맥조영술 MDCT에서 고정 관전류 기법과 Z-축 자동 관전류 변동 제어에 의한 선량 비교

  • Yoo, Beong-Gyu (Department of Radiologic Technology, Wonkwang Health Science College) ;
  • Lee, Jong-Seok (Department of Radiologic Technology, Wonkwang Health Science College) ;
  • Jang, Keun-Jo (Department of Radiology, Presbyterian Medical Center) ;
  • Jeon, Sang-Hwan (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Yong-Soo (Department of Nuclear Engineering, Hanyang University) ;
  • Kweon, Dae-Cheol (Department of Radiology, Seoul National University Hospital)
  • Published : 2007.09.30

Abstract

Z-axis automatic tube current modulation technique automatically adjusts tube current based on size of body region scanned. The purpose of the current study was to compare noise, and radiation dose of multi-detector row CT (MDCT) of lower extremity performed with Z-axis modulation technique of automatic tube current modulation with manual selection fixed tube current. Fifty consecutive underwent MDCT venography of lower extremity with use of a MDCT scanner fixed tube current and Z-axis automatic tube current modulation technique (10, 11 and 12 HU noise index, $70{\sim}450\;mA$). Scanning parameters included 120 kVp, 0.5 second gantry rotation time, 1.35:1 beam pitch, and 1 mm reconstructed section thickness. For each subject, images obtained with Z-axis modulation were compared with previous images obtained with fixed tube current (200, 250, 300 mA) and with other parameters identical. Images were compared for noise at five levels: iliac, femoral, popliteal, tibial, and peroneal vein of lower extremity. Tube current and gantry rotation time used for acquisitions at these levels were recorded. All CT examinations of study and control groups were diagnostically acceptable, though objective noise was significantly more with Z-axis automatic tube current modulation. Compared with fixed tube current, 2-axis modulation resulted in reduction of CTDIvol (range, $-6.5%{\sim}-35.6%$) and DLP (range, $-0.2%{\sim}-20.2%$). Compared with manually selected fixed tube current, 2-axis automatic tube current modulation resulted in reduced radiation dose at MDCT of lower extremity venography.

하지 정맥류 질환 환자를 대상으로 하지 정맥조영술 MDCT 검사에서 환자의 피폭선량을 최소화 하면서 최적의 진단영상을 묘출하기 위해 고정 관전류 기법과 Z-축 자동 관전류 변동 제어를 이용하여 CTDIvol(CT dose index volume), DLP(dose length product) 산출을 통한 영상의 노이즈를 측정하여 비교하였다. Monte Carlo simulation으로 200, 250, 300 mA에서 CTDIw, CTDIvol, DLP를 계산하여 고정 관전류 기법과 비교하였다. 고정 관전류 기법의 대상 환자는 50명(평균 나이, 46세; 연령 범위, 35-61세)으로 남성30명, 여성 20명 이었고, 평균 체중은 62.4 kg 이었다. Z-축 자동 관전류 변동 제어 대상 환자는 50명(평균 나이, 43세; 범위, 37-63세)으로 남성25명, 여성 25명 이었고 평균 체중은 60.1 kg 이었다. 고정 관전류 기법은 200, 250, 300 mA를 기준으로 하고, Z-축 자동 관전류 변동 제어는 노이즈 지수 10, 11, 12 HU에서 관전류 $70{\sim}450\;mA$ 범위 내에서 자동으로 선택하였다. 고정 관전류 기법과 Monte Carlo simulation 비교에서 200 mA에서의 CTDIvol은 차이가 없었으나, 250 mA, 300 mA 에서의 Monte Carlo simulation는 높았고, DLP는 모든 관전류에서 Monte Carlo simulation이 높게 측정 되었다. 노이즈는 고정 관전류에서 최소 $9.8{\pm}0.9\;HU$, 최대 $12.5{\pm}0.7\;HU$ 이었고, Z-축 자동 관전류 변동 제어에서는 최소 $11.3{\pm}0.8\;HU$, 최대 $12.9{\pm}0.7\;HU$이었다. Z-축 자동 관전류 변동 제어에서 노이즈 지수가 증가하면 CTDIvol과 DLP가 감소하였으나 노이즈는 증가하였다. 생식부위를 포함하는 하지 정맥조영술에서 Z-축 자동 관전류 변동 제어 방법이 고정 관전류 기법에 비해 선량을 감소하는 효과가 있었다.

Keywords

References

  1. Golledge J, Quigley FG. Pathogenesis of varicose veins. Eur J Vasc Endovasc Surg. 2003;25(4):319-324 https://doi.org/10.1053/ejvs.2002.1843
  2. Benabou JE, Molnar LJ, Cerri GG. Duplex sonographic evaluation of the sapheno-femoral venous junction in patients with recurrent varicose veins after surgical treatment. J Clin Ultrasound. 1998;26(8):401-404 https://doi.org/10.1002/(SICI)1097-0096(199810)26:8<401::AID-JCU5>3.0.CO;2-M
  3. Erdman WA, Jayson HT, Redman HC, Miller GL, Parkey RQ, Peshock RW. Deep venous thrombosis of extremities: role of MR imaging in the diagnosis. Radiology. 1990;174:425-431 https://doi.org/10.1148/radiology.174.2.2404315
  4. Evans AJ, Sostman HD, Knelsin MH, et al. Detection of deep venous thrombosis: prospective comparison of MR imaging with contrast venography. AJR Am J Roentgenol. 1993;161:131-135 https://doi.org/10.2214/ajr.161.1.8517292
  5. HoltZ DJ, Debatin JF, McKinnon GC, et al. MR venography of the calf: value of flow-enhanced time-of - flight echoplanar imaging. AJR Am J Roentgenol. 1996;166:663-668 https://doi.org/10.2214/ajr.166.3.8623646
  6. Kweon DC, Kim TH, Yang SH, Yoo BG, Kim MG, Park P. Subcutaneous injection contrast media extravasation: 3D CT appearance. Korean J Med Phys. 2005;16(1):47- 51
  7. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, Saini S. Strategies for CT radiation dose optimization. Radiology. 2004;230:619-628 https://doi.org/10.1148/radiol.2303021726
  8. Brisse HJ, Madec L, Gaboriaud G, et al. Automatic exposure control in multichannel CT with tube current modulation to achieve a constant level of image noise: experimental assessment on pediatric phantoms. Med Phys. 2007;34(7):3017-3033
  9. Shope TB, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission x-ray computed tomography. Med Phys. 1981;8(4):488-495 https://doi.org/10.1118/1.594995
  10. McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics. 2002;22(6):1541-1553 https://doi.org/10.1148/rg.226025128
  11. ImPACT CT patient dosimetry calculator version 0.99x. ImPACT. Medical devices agency. London. 2006
  12. Primak AN, McCollough CH, Bruesewitz MR, Zhang J, Fletcher JG. Relationship between noise, dose, and pitch in cardiac multi-detector row CT. Radiographics. 2006;26(6):1785-1794 https://doi.org/10.1148/rg.266065063
  13. Goldstone J. Veins and lymphatics, the current diagnosis and treatment of surgery. preoperative angiographic control. Phlebologie. 1993;46:521
  14. Callam MJ. Epidemiology of varicose veins. Br J Surg. 1994;81:167-173 https://doi.org/10.1002/bjs.1800810204
  15. Labropoulos N, Giannoukas AD, Delis K, Mansour MA, Kang SS, Nicolaides AN, Lumley J, Baker WH. Where does venous reflux start? J Vasc Surg. 1997;26(5):736- 742 https://doi.org/10.1016/S0741-5214(97)70084-3
  16. Jutley RS, Cadle I, Cross KS. Preoperative assessment of primary varicose veins: a duplex study of venous incompetence. Eur J Vasc Endovasc Surg. 2001;21(4) :370-373 https://doi.org/10.1053/ejvs.2001.1343
  17. Kweon DC, BG Yoo, Yang SH, Kim JG. Findings of an intravenous catheter fragment in the vein using the 3D image reformations of MDCT. Korean J Med Phys. 2006;17(3):167-172
  18. Greess H, Wolf H, Baum U, Lell M, Pirkl M, Kalender W, Bautz W. Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol. 2000;10:391-394 https://doi.org/10.1007/s003300050062
  19. Tack D, De Maertelaer V, Gevenois PA. Dose reduction in multidetector CT using attenuation-based online tube current modulation. AJR Am J Roentgenol. 2003; 181:331-334 https://doi.org/10.2214/ajr.181.2.1810331
  20. Giacomuzzi SM, Erckert B, Schopf T, et al. The smartscan procedure of spiral computed tomography: a new method for dose reduction. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr. 1996;165:10-16 https://doi.org/10.1055/s-2007-1015707
  21. Greess H, Nömayr A, Wolf H, et al. Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose). Eur Radiol. 2002;12:1571-1576 https://doi.org/10.1007/s00330-001-1255-4
  22. Prasad SR, Wittram C, Shepard JA, McLoud T, Rhea J. Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR Am J Roentgenol. 2002;179:461-465 https://doi.org/10.2214/ajr.179.2.1790461
  23. Kalra MK, Prasad S, Saini S, et al. Clinical comparison of standard-dose and 50% reduced-dose abdominal CT: effect on image quality. AJR Am J Roentgenol. 2002; 179:1101-1106 https://doi.org/10.2214/ajr.179.5.1791101
  24. Kalra MK, Maher MM, D'Souza RV, Rizzo S, Halpern EF, Blake MA, Saini S. Detection of urinary tract stones at low-radiation-dose CT with Z-axis automatic tube current modulation: phantom and clinical studies. Radiology. 2005;235(2):523-529 https://doi.org/10.1148/radiol.2352040331
  25. Kalra MK, Rizzo S, Maher MM, Halpern EF, Toth TL, Shepard JA, Aquino SL. Chest CT performed with Z-axis modulation: scanning protocol and radiation dose. Radiology. 2005;237(1):303-308 https://doi.org/10.1148/radiol.2371041227
  26. Jones DG, Shrimpton PC. Survey of CT practice in the UK. Part 3: normalised organ doses calculated using Monte Carlo techniques (NRPB-R250). Chilton: National Radiological Protection Board, 1991
  27. DeMarco JJ, Cagnon CH, Cody DD, et al. Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol. 2007;52(9):2583-2597 https://doi.org/10.1088/0031-9155/52/9/017
  28. Groves AM, Owen KE, Courtney HM, Yates SJ, Goldstone KE, Blake GM, Dixon AK. 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol. 2004;77(920):662-625 https://doi.org/10.1259/bjr/48307881
  29. Tsapaki V, Aldrich JE, Sharma R, et al. Dose reduction in CT while maintaining diagnostic confidence: diagnostic reference levels at routine head, chest, and abdominal CTIAEA- coordinated research project. Radiology. 2006;240(3):828-834 https://doi.org/10.1148/radiol.2403050993
  30. Shrimpton PC, Hillier MC, Lewes MA, Dunn M. National Radiological Protection Board (NRPB): doses from computed tomography examinations in the UK-2003 review. Document NRPB-W67. Chilton, England: National Radiological Protection Board, 2005
  31. Namasivayam S, Kalra MK, Pottala KM, Waldrop SM, Hudgins PA. Optimization of Z-axis exposure control for multidetector row CT evaluation of neck and comparison with fixed tube current technique for image quality and radiation dose. Am J Neuroradiol. 2006;27:2221-2225
  32. Kalra MK, Maher MM, Kamath RS, Horiuchi T, Toth TL, Halpern EF, Saini S. Sixteen-detector row CT of abdomen and pelvis: study for optimization of Z-axis modulation technique performed in 153 patients. Radiology. 2004;233:241-249 https://doi.org/10.1148/radiol.2331031505
  33. Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S. Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology. 2004;232:347-353 https://doi.org/10.1148/radiol.2322031304
  34. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, Saini S. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233(3):649-657 https://doi.org/10.1148/radiol.2333031150
  35. Hur G, Hong SW, Kim SY, Kim YH, Hwang YJ, Lee WR, Cha SJ. Uniform image quality achieved by tube current modulation using SD of attenuation in coronary CT angiography. AJR Am J Roentgenol. 2007;189(1): 188-196 https://doi.org/10.2214/AJR.06.1201