An Approximated RLS Algorithm for Adaptive Parameter Estimation

적응 파라미터 예측을 위한 근사화된 RLS 알고리즘

  • 안봉만 (전북대학교 Next 사업단) ;
  • 황지원 (익산대학 컴퓨터과학과) ;
  • 유정래 (서울산업대학교 제어계측공학과) ;
  • 조주필 (군산대학교 전자정보공학부)
  • Published : 2007.09.30

Abstract

This paper presents the fast adaptive algorithm which applies an approximation scheme into RLS algorithm. The proposed algorithm(D-RLS) derives a QRD RLS algorithm derivation process from RLS algorithm recursively. D-RLS has the similar pattern as the algorithm having the approximation that input signals are separated respectively. Computational complexity of D-RLS is O(N), fewer than $O(N^2)$. To evaluate performance of proposed algorithm, we use the system identification method of FIR and Volterra system. And, finally, we can show D-RLS has an excellent performance.

본 논문은 근사화 기법을 RLS 알고리즘에 적용한 고속 적응 알고리즘을 제안한다. 제안 알고리즘(D-RLS)은 QR 분해 RLS 알고리즘 유도 과정을 RLS 알고리즘으로부터 역으로 유도한 알고리즘이다. 유도된 알고리즘(D-RLS)은 입력 신호들이 서로 분리되어 있다는 가정을 사용한 알고리즘과 유사한 형태를 취한다. 이 알고리즘의 계산량은 $O(N^2)$ 보다 작은 O(N)이다. 이 알고리즘의 성능 평가를 위하여 FIR 시스템과 비선형(Volterra) 시스템의 시스템 식별 기법을 이용하였으며, 결과적으로 우수한 성능을 나타냄을 확인하였다.

Keywords

References

  1. T. Y. and B. Shahrrava, 'Performance of variable step-size LMS algorithms for linear adaptive inverse control systems,' Electrical and Computer Engineering, 2005. Canadian Conference on 1-4, pp.755 - 758, May 2005
  2. M. T. Akhtar, M. Abe and M. Kawamata, 'A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems,' Audio, Speech and Language Processing, vool. 14, Issue 2, pp.720 - 726, March 2006 https://doi.org/10.1109/TSA.2005.855829
  3. R. C. Bilcu, P. Kuosmanen and K. Egiazarian, 'A transform domain LMS adaptive filter with variable step-size,' IEEE Signal Processing Letters, vol. 9, Issue 2, pp.51 - 53 Feb. 2002 https://doi.org/10.1109/97.991136
  4. Hyun-Chool Shin, A. H. Sayed, Woo-Jin Song, 'Variable step-size NLMS and affine projection algorithms,' IEEE, Signal Processing Letters, vol. 11, Issue 2, Part 2, pp.132 - 135, Feb. 2004 https://doi.org/10.1109/LSP.2003.821722
  5. M. T. Morf, T. Kailath and L. Ljung, 'Fast algorithm for recursive identification,' in proc., 1976 Congress Decision Control, Clearwater Beach, FL, pp.916-92, 1976
  6. J. M. Cioffi and T. Kailath, 'Fast RLS Transversal filters for adaptive filtering,' IEEE Trans., Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 304-337, 1984
  7. W. M. Gentleman and H. T. Kung, 'Matrix triangularization by systolic array,' in Proc. SPIE int. Soc., Opt. Eng., vol. 298. pp.298-303, 1981
  8. J. G. McWhiter, 'Recursive least squares minimization using a systolic array,' in Proc. SPIE int. Soc., Opt. Eng., vol. 431. pp.105-112, 1983
  9. J. M. Cioffi, 'A fast adaptive ROTOR's RLS algorithms,' IEEE Trans., Acoust., Speech, Signal Processing, vol. 38, pp.631-653, 1990 https://doi.org/10.1109/29.52704
  10. Z. S. Liu, 'QR methods of O(N) complexity in adaptive parameter estimation,' IEEE Trans, Signal Processing, vol. 43, pp.720-729, 1995 https://doi.org/10.1109/78.370626
  11. S. C. Chan, X. X. Yang, , 'Improved approximate QR-LS algorithms for adaptive filtering,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 51, Issue 1, pp. 29 - 39, Jan. 2004 https://doi.org/10.1109/TCSII.2003.821514
  12. S. Haykin, Adaptive Filter Theory-fouth edition, Upper - Saddle River, New_Jersey 07458: Prentice Hall, 2002