다양한 포맷변환을 지원하는 Transcoder의 개선된 Cubic Convolution Scaler

Modified Cubic Convolution Scaler for Multiformat Conversion in a Transcoder

  • 유영조 (세종대학교, 정보통신연구소, 정보통신공학과) ;
  • 서주헌 (세종대학교, 정보통신연구소, 정보통신공학과) ;
  • 한종기 (세종대학교, 정보통신연구소, 정보통신공학과)
  • 발행 : 2007.09.30

초록

본 논문에서는 임의의 배율로 디지털 영상을 확대와 축소하는 개선된 cubic convolution 보간법을 제안한다. 제안하는 공간해상도조정 방법은 압축된 HD 비트스트림이나 SD 비트 스트림을 transcoding시키는 과정에서 다양한 형식의 해상도를 조정하기위해 사용된다. Transcoder등 다양한 응용분야에서 영상의 화질은 유지하면서 크기를 조정하는 것은 매우 중요한 기술이다. 해상도조정은 원본 디지털 데이터를 연속함수로 변환하는 단계와 새로운 샘플링간격에 맞게 재표본화하는 단계, 이렇게 두 단계로 구분된다. 우리는 원본영상과 해상도조정 된 영상사이의 관계를 고려하여 보간 필터의 kernel 개선에 초점을 맞췄다. 본 논문에서는 MPEG 표준에서 고려하는 다양한 영상포맷들간 해상도를 변환시키기 위한 기술을 제안한다. 이 방법은 기존의 방법과 비교하였을 때, 정보 손실을 최소화하여 고화질의 해상도 변환 기능을 가능하게 한다.

We derive a modified version of cubic convolution interpolation for the enlargement or reduction of digital images by arbitrary scaling factors. The proposed scaling scheme is used to resize various format pictures in the transcoding system, which transforms the bitstream compressed at a bit rate, such as the HD bitstream, into another bit rate stream. In many applications such as the transcoder, the resolution conversion is very important for changing the image size while the scaled image maintains high quality. We focus on the modification of the scaler kernel according to the relation between formats of the original and the resized image. In the modification, various formats defined in MPEG standards are considered. We show experimental results that demonstrate the effectiveness of the proposed interpolation method.

키워드

참고문헌

  1. T. Shanableh and M. Ghanbari, 'Heterogeneous video transcoding to lower spatio-temporal resolutions and different encoding formats,'IEEE Trans. Multimedia 2, 101-110 (June 2000) https://doi.org/10.1109/6046.845014
  2. B. Shen, I. K. Sethi, and B. Vasudev, 'Adaptive motion vector resampling for compress video downscaling,' IEEE Trans. Circuits Syst. Video Technol. 9, 929-936 (Sep. 1999) https://doi.org/10.1109/76.785730
  3. J. Youn, M. T. Sun, and C. W. Lin, 'Motion vector refinement for high performance transcoding,' IEEE Trans. Multimedia 1, 30-40 (Mar. 1995) https://doi.org/10.1109/6046.748169
  4. C. Yim and M. A. Isnardi, 'An efficient method for DCT-domain image resizing with mixed field/frame-mode macroblocks,' IEEE Trans. Circuits Syst. Video Technol. 9, 696-700 (Aug. 1999) https://doi.org/10.1109/76.780359
  5. J. Song and B. L. Yeo, 'A fast algorithm for DCT-domain inverse motion compensation based on shared information in a macroblock,' IEEE Trans. Circuits Syst. Video Technol. 10, 767–775 (Aug. 2000)
  6. N. Merhav, 'Multiplication-free approximation algorithms for compressed domain linear operations on images,' IEEE Trans. Image Process. 8, 247–254 (Feb. 1999)
  7. S. Liu and A. C. Bovik, 'Local bandwidth constrained fast inverse motion compensation for DCT-domain video transcoding,' IEEE Trans. Circuits Syst. Video Technol. 12, 309–319 (May 2002)
  8. M. Unser, A. Aldroubi, and M. Eden, 'Enlargement or reduction of digital images with minimum loss of information,' IEEE Trans. Image Process. 4, 247–258 (Mar. 1995)
  9. W. K. Pratt, Digital Image Processing, John Wiley and Sons, New York (1991)
  10. R. G. Keys, 'Cubic convolution interpolation for digital image rocessing,' IEEE Trans. Acoust., Speech, Signal Process. 29, 1153-1160 (Dec. 1981) https://doi.org/10.1109/TASSP.1981.1163711
  11. H. S. Hou and H. C. Andrews, 'Cubic splines for image interpolation and digital filtering,' IEEE Trans. Acoust., Speech, Signal Process. 26, 508–517 (1978)
  12. M. Unser, A. Aldroubi, and M. Eden, 'Fast B-spline transforms for continuous image representation and interpolation,' IEEE Trans. Pattern Anal. Mach. Intell. 13, 277-285 (Mar. 1991) https://doi.org/10.1109/34.75515
  13. S. K. Park and R. A. Schowengerdt, 'Image reconstruction by arametric cubic convolution,' Comput. Vis. Graph. Image Process. 23, 258–272 (Sep. 1983)
  14. G. Ramponi, 'Warped distance for space-variant linear image nterpolation,' IEEE Trans. Image Process. 8, 629-639 (May 1999) https://doi.org/10.1109/83.760311
  15. H. Sun, W. Kwok, and J. W. Zdepski, 'Architectures for MPEG ompressed bitstream scaling,' IEEE Trans. Circuits Syst. Video Technol. 6, 191-199 (Apr. 1999) https://doi.org/10.1109/76.488826
  16. G. D. L. Reyes, A. R. Reibman, S. F. Chang, and J. C. I. Chuang, 'Error resilient transcoding for video over wireless channels,' IEEE J. elected Area Commun. 18, 1063-1074 (June 2000) https://doi.org/10.1109/49.848256
  17. ISO/IEC and ITU-T, 'Information technology-Generic coding of moving pictures and associated audio: Video,' ISO/IEC/JTC1/SC29/WG11, N0801, Apr. 1995
  18. H. Hwang, 'Interlaced to progressive scan conversion for HD-MAC application,' IEEE Trans. Consum. Electron. 38(3), 151-156 (Aug. 1992) https://doi.org/10.1109/30.156676
  19. M. Karlsson, P. Pohjala, H. Rantanen, and S. Kalli, 'Evaluation of scanning rate up conversion algorithms; subjective testing of interlaced to progressive conversion,' IEEE Trans. Consum. Electron. 38(3), 162-167 (Aug. 1992) https://doi.org/10.1109/30.156678
  20. M. H. Lee, J. H. Kim, J. S. Lee, K. K. Ryu, and D. I. Song, 'A new algorithm for interlaced to progressive scan conversion based on directional corrections and its IC design,' IEEE Trans. Consum. Electron. 40(2), 119-129 (May 1994) https://doi.org/10.1109/30.286406
  21. R. Li, N. K. Chung, K. T. Mo, D. M. Fisher, and V. Wong, 'A lexible display module for DVD and set-up box applications,' IEEE Trans.Consum. Electron. 43(3), 496-503 (Aug. 1997) https://doi.org/10.1109/30.628664
  22. S. S. Rifman, 'Digital rectification of ERTS multispectral imagery,' Proc. Symp. Significant Results Obtained from ERTS-1 (NASA SP-327) I (Sec. B), 1131-1142 (1973)
  23. R. Bernstein, 'Digital image processing of Earth observation sensor data,' IBM J. Res. Dev. 20, 40-57 (1976) https://doi.org/10.1147/rd.201.0040
  24. M. Karczewicz and M. Gabbouj, 'Robust B-spline image modeling with application to image processing,' EEE Trans. Image Process. 7, 912-917 (June 1998) https://doi.org/10.1109/83.679442
  25. H. J. Kim and C. C. Li, 'Lossless and lossy image compression using biorthognal wavelet transforms with multiplierless operations,' IEEE Trans. Circuits Syst. II: Analog digital signal Process 45, 1113-1118 (Aug. 1998) https://doi.org/10.1109/82.718821