DOI QR코드

DOI QR Code

Design of a 64×64-Bit Modified Booth Multiplier Using Current-Mode CMOS Quarternary Logic Circuits

전류모드 CMOS 4치 논리회로를 이용한 64×64-비트 변형된 Booth 곱셈기 설계

  • 김정범 (강원대학교 전기전자공학부)
  • Published : 2007.08.31

Abstract

This paper proposes a $64{\times}64$ Modified Booth multiplier using CMOS multi-valued logic circuits. The multiplier based on the radix-4 algorithm is designed with current mode CMOS quaternary logic circuits. Designed multiplier is reduced the transistor count by 64.4% compared with the voltage mode binary multiplier. The multiplier is designed with Samsung $0.35{\mu}m$ standard CMOS process at a 3.3V supply voltage and unit current $5{\mu}m$. The validity and effectiveness are verified through the HSPICE simulation. The voltage mode binary multiplier is achieved the occupied area of $7.5{\times}9.4mm^2$, the maximum propagation delay time of 9.8ns and the average power consumption of 45.2mW. This multiplier is achieved the maximum propagation delay time of 11.9ns and the average power consumption of 49.7mW. The designed multiplier is reduced the occupied area by 42.5% compared with the voltage mode binary multiplier.

본 논문에서는 CMOS 다치 논리회로를 이용하여 $64{\times}64$ 비트 Modified Booth 곱셈기를 설계하였다. 설계한 곱셈기는 Radix-4 알고리즘을 이용하여 전류모드 CMOS 4치 논리회로로 구현하였다. 이 곱셈기는 트랜지스터 수를 기존의 전압모드 2진 논리 곱셈기에 비해 64.4% 감소하였으며, 내부 구조를 규칙적으로 배열하여 확장성을 갖도록 설계하였다. 설계한 회로는 2.5V의 공급전압과 단위전류 $5{\mu}A$를 사용하여, $0.25{\mu}m$ CMOS 기술을 이용하여 구현하였으며 HSPICE를 사용하여 검증하였다. 시뮬레이션 결과, 2진 논리 곱셈기는 $7.5{\times}9.4mm^2$의 점유면적에 9.8ns의 최대 전달지연시간과 45.2mW의 평균 전력소모 특성을 갖는 반면, 설계한 곱셈기는 $5.2{\times}7.8mm^2$의 점유면적에 11.9ns의 최대 전달지연시간과 49.7mW의 평균 전력소모 특성으로 점유면적이 42.5% 감소하였다.

Keywords

References

  1. 이용섭, 곽철호, 김정범, '전류모드 다치논리 CMOS 회로를 이용한 전가산기 설계' 전자공학회 논문지, 제39권, SD편 제1호, pp.76-82, 2002년 1월
  2. K. Wayne Current, 'Current-Mode CMOS Multiple-Valued Logic Circuits' IEEE J. Solid-State Circuits, vol.29, No.2, pp.95-107, Feb. 1994 https://doi.org/10.1109/4.272112
  3. Takahiro Hanyu and Michitaka Kameyama, 'A 200 MHz pipelined multiplier using 1.5 V -supply multiple-valued MOS current-mode circuits with dual rail source-coupled logic' IEEE J. Solid-State Circuits, vol.30, No.11, pp.1239-1245, Nov. 1995 https://doi.org/10.1109/4.475711
  4. Shoji Kawahito, Michitaka Karneyama, Tatsuo Higuchi, and Haruyasu Yamada, 'A 32 x 32-bit Multiplier Using Multiple-Valued MOS Current-Mode Circuits' IEEE J. Solid-State Circuits, vol.23, No.1, pp.124-132, Feb. 1988 https://doi.org/10.1109/4.268
  5. Gensuke Gato, Atsuki Inoue, Ryoichi Ohe, Shoichiro Kashiwakura, Shin Mitarai Tsuru, and Tetsuo Izawa, 'A 4.1-ns Compact 54 x 54-b Multiplier Utilizing Sign-Select Booth Encoders' IEEE J. Solid-State Circuits, vol.32, No.11, pp.1676-1682, Nov. 1997 https://doi.org/10.1109/4.641687
  6. Chung-Hsun Huang, Jinn-Shyan Wang, and Yan-Chao Huang, 'Design of high-performance CMOS priority encoders and incrementer/ decrementers using multilevel lookahead and . multilevel folding techniques' IEEE J. Solid-State Circuits, vol. 37, No.1, pp.63-76, Jan. 2002 https://doi.org/10.1109/4.974546
  7. A. Morgul and T. Temel, 'Current-model level restoration circuit for multi-valued logic', lEE Electron. Lett., vol. 41, No.5, pp.230-231, Mar. 2005 https://doi.org/10.1049/el:20056998
  8. A. Morgul and T. Temel, 'Implementation of multi-valued logic gates using full current-mode CMOS circuits' Analog Integr. Circuits Signal Process, vol. 39, No.1, pp.191-204, 2004 https://doi.org/10.1023/B:ALOG.0000024066.66847.89
  9. K. Wayne Current, 'Application fo quaternary logic to the design of a proposed discrete cosine transform chip' Int. J. Electronics, vol. 67, No.5, pp.678-701, 1989
  10. Masayuki Mizuno, Masakazu Yamashina, Koichiro Furuta, Hiroyuki Igura, Hitoshi Abiko, Kazuhiro Okabe, Atsuki Ono, and Hachiro Yamada 'A Ghz MOS Adaptive pipeline Technique Using MOS Current-Mode Logic' IEEE J. Solid-State Circuits, vol.31 , No.6, pp.784-791, June 1996 https://doi.org/10.1109/4.509864