DOI QR코드

DOI QR Code

Half-metallicity and Magnetism of Co2ZrSi/ZnTe(001) Interface: A First-principles Study

Co2ZrSi/ZnTe(001)계면의 자성과 반쪽금속성에 대한 제일원리 연구

  • Jin, Y.J. (Department of Physics, Inha University) ;
  • Lee, J.I. (Department of Physics, Inha University)
  • Published : 2007.08.31

Abstract

We have investigated the half-metallicity and magnetism for the Heusler ferromagnet $Co_2$ZrSi interfaced with semiconductor ZnTe along the (001) plane by using the full-potential linearized augmented plane wave (FLAPW) method. We considered low types of possible interfaces: ZrSi/Zn, ZrSi/Te, Co/Zn, and Co/Te, respectively. From the calculated density of states, it was found that the half-metallicity was lost at all the interfaces, however for the Co/Te system the value of minority spin density of states was close to zero at the Fermi level. These facts are due to the interface states, appeared in the minority spin gap in bulk $Co_2$ZrSi, caused by the changes of the coordination and symmetry and the hybridizations between the interface atoms. At the Co/Te interface, the magnetic moments of Co atoms are 0.68 and $0.78{\mu}_B$ for the "bridge" and "antibridge" sites, respectively, which are much reduced with respect to that ($1.15{\mu}_B$) of the bulk $Co_2$ZrSi. In the case of Co/Zn, Co atoms at the "bridge" and "antibridge" sites have magnetic moments of 1.16 and $0.93{\mu}_B$, respectively, which are almost same or slightly decreased compared to that of the bulk $Co_2$ZrSi. On the other hand, for the ZrSi/Zn and ZrSi/Te systems, the magnetic moments of Co atoms at the sub-interface layers are in the range of $1.13{\sim}1.30\;{\mu}_B$, which are almost same or slightly increased than that of the bulk $Co_2$ZrSi.

호이슬러 구조를 가진 반쪽금속 $Co_2$ZrSi와 반도체인 ZnTe이 (001)면을 따라 계면을 이루었을 때 전자구조, 자성 및 반쪽금속성을 총 퍼텐셜 선형보강평면파동(FLAPW) 방법을 이용하여 이론적으로 연구하였다. 모두 4가지 가능한 계면, 즉 ZrSi/Zn, ZrSi/Te, Co/Zn와 Co/Te을 고려하였다. 계산된 상태밀도로부터 4가지 계면에서 모두 반쪽금속성이 깨어졌음을 알 수 있었으나 Co/Te의 경우 페르미에너지에서 소수 스핀 상태밀도의 값은 영에 가까웠다. 계면에서 반쪽금속성이 파괴되는 것은 계면에서 원자들의 좌표수와 대칭성이 덩치상태와 달라지고 계면전자들 사이의 띠 혼성에 의해 덩치 $Co_2$ZrSi의 소수 스핀 띠간격에 계면상태들이 나타났기 때문이다. Co/Te의 계면에서 Co원자의 자기모멘트의 값은 "bridge"와 "antibridge" 위치에서 각각 0.68과 $0.78{\mu}_B$로서 이는 덩치 Co경우의 값($1.15{\mu}_B$)에 비하여 크게 감소한 것이다. Co/Zn에서 "bridge"와 "antibridge" 위치에 있는 Co원자의 자기모멘트는 각각 1.16과 $0.93{\mu}_B$의 값을 가졌다. 반면 ZrSi/Zn와 ZrSi/Te의 경우 계면 바로 밑층의 Co원자들은 $1.13{\sim}1.30\;{\mu}_B$ 사이의 자기모멘트를 가졌는데 이는 덩치 $Co_2$ZrSi에서의 값과 비슷하거나 약간 증가한 값이다.

Keywords

References

  1. G. Prinz and K. Hathaway, Physics Today, 48, 24 (1995)
  2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001) https://doi.org/10.1126/science.1065389
  3. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, 2024 (1983) https://doi.org/10.1103/PhysRevLett.50.2024
  4. S. P. Lewis, P. B. Allen, and T. Saski, Phys. Rev. B, 55, 10253 (1997) https://doi.org/10.1103/PhysRevB.55.10253
  5. T. Shishidou, A. J. Freeman, and R. Asahi, Phys. Rev. B, 64, 180401(R) (2001) https://doi.org/10.1103/PhysRevB.64.180401
  6. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett., 81, 1953 (1998)
  7. X. Q. Chen, R. Podloucky, and P. Rogl, J. Appl. Phys., 100, 113901 (2006) https://doi.org/10.1063/1.2374672
  8. S. C. Lee, T. D. Lee, P. Blaha, and K. Schwarz, J. Appl. Phys., 97, 10C307 (2005)
  9. I. Galanakis, K. Ozdogan, E. Sasioglu, and B. Aktas, Rev. B, 75, 092407 (2007) https://doi.org/10.1103/PhysRevB.75.092407
  10. Y. J. Jin and J. I. Lee, J. Korean Phys. Soc., 51, 155 (2007) https://doi.org/10.3938/jkps.51.155
  11. S. Picozzi, A. Continenza, and A. J. Freeman, J. Phys. Chem. Solids, 64,1697 (2003) https://doi.org/10.1016/S0022-3697(03)00121-5
  12. I. Galanakis, J. Phys.: Condens. Matter, 16, 8007 (2004) https://doi.org/10.1088/0953-8984/16/45/022
  13. R. Amutha, A. Subbarayan, and R. Sathyamoorthy, Cryst. Res. Technol., 41, 1174 (2006) https://doi.org/10.1002/crat.200610744
  14. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  15. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  16. M. Weinert, E. Wimmer, and A. J. Freeman, ibid., 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  17. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992) https://doi.org/10.1103/PhysRevB.45.13244
  18. D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1977) https://doi.org/10.1088/0022-3719/10/16/019
  19. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B, 66, 174429 (2002) https://doi.org/10.1103/PhysRevB.66.174429
  20. I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys., 39, 765 (2006) https://doi.org/10.1088/0022-3727/39/5/S01
  21. S. C. Erwin, S. H. Lee, and M. Scheffler, Phys. Rev. B, 65, 205422 (2002) https://doi.org/10.1103/PhysRevB.65.205422
  22. S. S. Kim, S. C. Hong, and J. I. Lee, Phys. Stat. Sol. (a), 189, 643 (2002) https://doi.org/10.1002/1521-396X(200202)189:3<643::AID-PSSA643>3.0.CO;2-F