초록
Recently, concrete has been made porous and used for sound absorption, water permeation, vegetation and water purification according to void characteristics. Many studies are carried out on the utilization of sewage sludge, fly ash and waste concrete to reduce the environmental load. This study was performed to evaluate the void, strength, relationship between void and strength, permeability and chemical resistance properties of porous polymer concrete for pavement with different fillers. An unsaturated polyester resin was used as a binder, crushed stone and natural sand were used as an aggregate and bottom ash, fly ash and blast furnace slag were used as fillers. The mix proportions were determined to satisfy the requirement for the permeability coefficient, $1{\times}10^{-2}$ cm/s for general permeable cement concrete pavement in Korea. The void ratios of porous polymer concrete with fillers were in the range of $18{\sim}23%$. The compressive strength and flexural load of porous polymer concrete with fillers were in the range of $19{\sim}22$ MPa and $18{\sim}24$ KN, respectively. The permeability coefficients of porous polymer concrete with fillers were in the range of $5.5{\times}10^{-1}{\sim}9.7{\times}10^{-2}$ cm/s. At the sulfuric acid resistance, the weight reduction ratios of porous polymer concrete immersed during 8-week in 5% $H_{2}SO_{4}$ were in the range of $1.08{\sim}3.56%$.