DOI QR코드

DOI QR Code

Functionalization of Fe3O4 Nanoparticles and Improvement of Dispersion Stability for Seperation of Biomolecules

생체분자 분리를 위한 Fe3O4 나노입자의 표면수식과 분산 안정성 향상

  • Kim, Min-Jung (College of Engineering Sciences, Hanyang University) ;
  • An, Guk-Hwan (College of Engineering Sciences, Hanyang University) ;
  • Lim, Borami (College of Engineering Sciences, Hanyang University) ;
  • Kim, Hee-Taik (College of Engineering Sciences, Hanyang University) ;
  • Choa, Yong-Ho (College of Engineering Sciences, Hanyang University)
  • 김민정 (한양대학교 기능성나노소재연구실) ;
  • 안국환 (한양대학교 기능성나노소재연구실) ;
  • 임보라미 (한양대학교 기능성나노소재연구실) ;
  • 김희택 (한양대학교 기능성나노소재연구실) ;
  • 좌용호 (한양대학교 기능성나노소재연구실)
  • Published : 2007.08.28

Abstract

The surface of magnetite ($Fe_{3}O_{4}$) nanoparticles prepared by coprecipitation method was modified by carboxylic acid group of poly(3-thiophenacetic acid (3TA)) and meso-2,3-dimercaptosuccinic acid (DMSA). Then the lysozyme protein was immobilized on the carboxylic acid group of the modification of the magnetite nanoparticles. The magnetite nanoparticles are spherical and the particle size is approximately 10 nm. We measured quantitative dispersion state by dispersion stability analyzer for each $Fe_{3}O_{4}$ nanoparticles with and without surface modification. The concentration of lysozyme on the modified magnetite nanoparticles was also investigated by a UV-Vis spectrometer and compared to that of magnetite nanoparticles without surface modification. The functionalized magnetite particles had higher enzymatic capacity and dispersion stability than non-functionalized magnetite nanoparticles.

Keywords

References

  1. C. B. Murray, D. J. Norris and M. G Bawendi: J. Am. Chem. Soc., 115 (1993) 8706 https://doi.org/10.1021/ja00072a025
  2. A. P. Alivisatos: J. Phys. Chem., 100 (1996) 13226 https://doi.org/10.1021/jp9535506
  3. P. L. Kronick, G L. Campbell and K. Joseph: Science, 200 (1978) 1074 https://doi.org/10.1126/science.653356
  4. S. Goodwin, C. Peterson, C. Hoh and C. J. Bittner: Magn. Magn. Mater., 194 (1999) 132 https://doi.org/10.1016/S0304-8853(98)00584-8
  5. P. K. Gupta, C. T. Hung, F. C. Lam and D. G Perrier: J. Pharm., 43 (1998) 167
  6. G M. Lanza, P. M. Winter, S. D. Caruthers, A. M. Morawski, A. H. Schmieder, K. C. Crowder and S. A. Wickline: J. Nucl. Cardiol., 11 (2004) 733 https://doi.org/10.1016/j.nuclcard.2004.09.002
  7. J. Wonterghern, S. Morup, S. W. Charles, S. Wells and J. Villadsen: Phys. Rev. Lett., 55 (1985) 410 https://doi.org/10.1103/PhysRevLett.55.410
  8. Z. Li, H. Bao and M. Gao: J. Am. Chern. Soc., 16 (2004) 1391
  9. C. C. Berry, S. Wells, S. Charles and A. S. G Curtis: Biomaterials, 24 (2003) 4551 https://doi.org/10.1016/S0142-9612(03)00237-0
  10. L. A. Harris, J. D. Goff, A. Y. Carmichael, J. S. Riffle, J. J. Harbum, T. G. St. Pierre and M. Saunders: Chem. Mater., 15 (2003) 1367 https://doi.org/10.1021/cm020994n