References
- Aha, D. W. and Bankert, R. L. (1997). Cloud classification using error correcting output codes. Artificial Intelligence Applications: Natural Resources, Agriculture and Environmental Science, 11, 13-28
- Berger, A (1999). Error-correcting output coding for text classification. In Proceedings of International Joint Conference Artificial Intelligence, IJCAI'99, Stockholm, Sweden
- Dietterich, T. G. and Bakiri, G. (1991). Error-correcting output codes: A general method for improving multi-class inductive learning programs. In Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91), 572-577, AAAI Press
- Dietterich, T. G. and Bakiri, G. (1995). Solving multi-class learning problems via errorcorrecting output codes. Journal of Artificial Intelligence Research, 2, 263-286
- Kittler, J., Ghaderi, R., Windeatt, T. and Matas, G. (2001). Face verification using error correcting output codes. In Computer Vision and Pattern Recognition CVPR01, Hawaii, IEEE Press
- Kuncheva, L. I. (2005). Using diversity measures for generating error -correcting output codes in classifier ensembles. Pattern Recognition Letters, 26, 83-90 https://doi.org/10.1016/j.patrec.2004.08.019
- Lee, Y., Lin Y. and Wahba, G. (2004). Multicategory support vector machines: theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association, 99, 67-81 https://doi.org/10.1198/016214504000000098
- Schapire, R. E. (1997). Using output codes to boost multi-class learning problems. In 14th International Conference on Machine Learning, 313-321, Morgan Kaufman
- Windeatt, T. and Ghaderi, R. (2003). Coding and decoding strategies for multi-class learning problems. Information Fusion, 4, 11-21 https://doi.org/10.1016/S1566-2535(02)00101-X