DOI QR코드

DOI QR Code

Bayesian Estimation of the Nakagami-m Fading Parameter

  • Son, Young-Sook (Department of Statistics, Chonnam National University) ;
  • Oh, Mi-Ra (Department of Statistics, Chonnam National University)
  • Published : 2007.08.31

Abstract

A Bayesian estimation of the Nakagami-m fading parameter is developed. Bayesian estimation is performed by Gibbs sampling, including adaptive rejection sampling. A Monte Carlo study shows that the Bayesian estimators proposed outperform any other estimators reported elsewhere in the sense of bias, variance, and root mean squared error.

Keywords

References

  1. Abramowitz, M. and Stegun, I. A. (1972). Polygamma Functions. Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables, 9th printing, Dover, New York
  2. Adbi, A. and Kaveh, M. (2000). Performance comparison of three different estimators for the Nakagami m parameter using Monte Carlo simulation. IEEE Communications Letters, 4, 119-121 https://doi.org/10.1109/4234.841316
  3. Bowman, K. O. and Shenton, L. R. (1988). Properties of Estimators for the Gamma Distribution. Marcel Dekker, New York
  4. Cheng, J. and Beaulieu, N. C. (2001). Maximum-likelihood based estimation of the Nakagami m parameter. IEEE Communications Letters, 5, 101-103 https://doi.org/10.1109/4234.913153
  5. Cheng, J. and Beaulieu, N. C. (2002). Generalized moment estimatiors for the Nakagami fading parameter. IEEE Communications Letters, 6, 144-146 https://doi.org/10.1109/4234.996038
  6. Damsleth, E. (1975). Conjugate classes for gamma distributions. Scandinavian Journal of Statistics, 2, 80-84
  7. Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398-409 https://doi.org/10.2307/2289776
  8. Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-348 https://doi.org/10.2307/2347565
  9. Greenwood, J. A. and Durand, D. (1960). Aids for fitting the gamma distribution by maximum likelihood. Technometrics, 2, 55-65 https://doi.org/10.2307/1266531
  10. Miller, R. B. (1980). Bayesian analysis of the two-parameter gamma distribution. Technometrics, 22, 65-69 https://doi.org/10.2307/1268384
  11. Nakagami, M. (1960). The m-distribution: a general formula of intensity distribution of rapid fading. Statistical Methods in Radio Wave Propagation, Oxford, U.K.; Pergamon Press, 3-36
  12. Ripley, B. D. (1987). Stochastic Simulation. John Wiley & Sons, New York
  13. Son, Y. S. and Oh, M. (2006). Bayesian estimation of the two-parameter gamma Distribution. Communications in Statistics-Simulation and Computation, 35, 285-293 https://doi.org/10.1080/03610910600591925
  14. Suzuki, H. (1977) A statistical model for urban radio propogation, IEEE transactions on communications, COM-25, 673-680
  15. The MathWorks Inc. (2002). MATLAB/Statistics Toolbox. Version 6.5, Natick, MA
  16. Thom, H. C. (1958). A note on the gamma distribution. Monthly Weather Review, 86, 117-122 https://doi.org/10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2
  17. Wiens, D. P., Cheng, J. and Beaulieu, N. C. (2003). A Class of method of moments estimators for the two-parameter gamma family. Parkistan Journal of Statistics, 29, 29-141
  18. Zhang, Q. T. (2002). A note on the estimation of Nakagami-m fading parameter. IEEE Communications Letters, 6, 237-238 https://doi.org/10.1109/LCOMM.2002.1010866

Cited by

  1. Posterior Properties of the Nakagami-m Distribution Using Noninformative Priors and Applications in Reliability vol.67, pp.1, 2018, https://doi.org/10.1109/TR.2017.2778139