DOI QR코드

DOI QR Code

Determination of Adsorption Isotherms of Hydroxide ata Platinum Electrode Interface Using the Phase-Shift Method and Correlation Constants

  • Chun, Jin-Y. (School of Chemical and Biological Engineering, Seoul National University) ;
  • Chun, Jang-H. (Department of Electronic Engineering, Kwangwoon University)
  • Published : 2007.08.28

Abstract

The phase-shift method and correlation constants, i.e., the electrochemical impedance spectroscopy (EIS) techniques for studying linear relationships between the behaviors (${\varphi}\;vs.\;E$) of the phase shift ($0^{\circ}{\leq}-{\varphi}{\leq}90^{\circ}$) for the optimum intermediate frequency and those (${\theta}\;vs.\;E$) of the fractional surface coverage ($1{\geq}{\theta}{\geq}0$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at noble and transition-metal/aqueous solution interfaces. At the Pt/0.1 MKOH aqueous solution interface, the Langmuir, Frumkin, and Temkin adsorption isotherms (${\theta}\;vs.\;E$), equilibrium constants ($K=5.6{\times}10^{-10}\;mol^{-1}\;at\;0{\leq}{\theta}<0.81$, $K=5.6{\times}10^{-9}{\exp}(-4.6{\theta})\;mol^{-1}\;at\;0.2<{\theta}<0.8$, and $K=5.6{\times}10^{-10}{\exp}(-12{\theta})\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$, interaction parameters (g = 4.6 for the Temkin and g = 12 for the Frumkin adsorption isotherm), rates of change of the standard free energy ($r=11.4\;kJ\;mol^{-1}$ for g=4.6 and $r=29.8\;kJ\;mol^{-1}$ for g=12), and standard free energies (${\Delta}G_{ads}^0=52.8\;kJ\;mol^{-1}\;at\;0{\leq}{\theta}<0.81,\;49.4<{\Delta}G_{\theta}^0<56.2\;kJ\;mol^{-1}\;at\;0.2<{\theta}<0.8$ and $80.1<{\Delta}_{\theta}^0{\leq}82.5\;kJ\;mol^{-1}\;at\;0.919<{\theta}{\leq}1$) of OH for the anodic $O_2$ evolution reaction (OER) are also determined using the phase-shift method and correlation constants. The adsorption of OH transits from the Langmuir to the Frumkin adsorption isotherm (${\theta}\;vs.E$), and vice versa, depending on the electrode potential (E) or the fractional surface coverage (${\theta}$). At the intermediate values of ${\theta}$, i.e., $0.2<{\theta}<0.8$, the Temkin adsorption isotherm (${\theta}\;vs.\;E$) correlating with the Langmuir or the Frumkin adsorption isotherm (${\theta}\;vs.\;E$), and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are accurate and reliable techniques to determine the adsorption isotherms and related electrode kinetic and thermodynamic parameters. They are useful and effective ways to study the adsorptions of intermediates (H, OH) for the sequential reactions (HER, OER) at the interfaces.

Keywords

References

  1. E. Gileadi (Ed.), Electrosorption, Plenum Press, New York, 1967
  2. E. Gileadi, E. Kirowa-Eisner, J. Penciner, Interfacial electrochemistry, Addison-Wesley Pub. Co. Reading, MA, 1975
  3. E. Gileadi, Electrode kinetics, VCH, New York, 1993
  4. J. O'M. Bockris, S. U. M. Khan, Surface electrochemistry, Plenum Press, New York, 1993
  5. B. E. Conway, G. Jerkiewicz (Eds.), Electrochemistry and materials science of cathodic hydrogen absorption and adsorption, PV 94-21, The Electrochemical Society, Pennington, NJ, 1995
  6. G. Jerkiewicz, Hydrogen sorption at/in electrodes, Prog. Surf. Sci., 57, 137 (1998) https://doi.org/10.1016/S0079-6816(98)00015-X
  7. J. O'M. Bockris, A. K. N. Reddy, M. Gamboa-Aldeco, Modern electrochemistry, 2nd Ed., Vol. 2A, Kluwer Academic/Plenum Press, New York, 2000
  8. G. Jerkiewicz, J. M. Feliu, B. N. Popov (Eds.), Hydrogen at surface and interfaces, PV 2000-16, The Electrochemical Society, Pennington, NJ, 2000
  9. J. H. Chun, K. H. Ra, The phase-shift method for the Frumkin adsorption isotherms at the Pd/$H_{2}SO_{4}$ and KOH solution interfaces, J. Electrochem. Soc., 145, 3794 (1998) https://doi.org/10.1149/1.1838875
  10. J. H. Chun, K. H. Ra, Hydrogen at surface and interfaces, in: G. Jerkiewicz. J. M. Feliu, B. N. Popov (Eds.), PV 2000-16, pp. 159-173, The Electrochemical Society, Pennington, NJ, 2000
  11. J. H. Chun, K. H. Ra, N. Y. Kim, The Langmuir adsorption isotherms of electroadsorbed hydrogens for the cathodic hydrogen evolution reactions at the Pt(100)/$H_{2}SO_{4}$ and LiOH aqueous solution interfaces, Int. J. Hydrogen Energy, 26, 941 (2001) https://doi.org/10.1016/S0360-3199(01)00028-3
  12. J. H. Chun, S. K. Jeon, J. H. Lee, The phase-shift method for the Langmuir adsorption isotherms of electroadsorbed H for the cathodic $H_{2}$ evolution reactions at the poly-Pt electrode interfaces, J. Korean Electrochem. Soc., 5, 131 (2002) https://doi.org/10.5229/JKES.2002.5.3.131
  13. J. H. Chun, K. H. Ra, N. Y. Kim, Qualitative analysis of the Frumkin adsorption isotherm of the over-potentially deposited hydrogen at the poly-Ni/KOH aqueous solution interface using the phase-shift method, J. Electrochem. Soc., 149, E325 (2002) https://doi.org/10.1149/1.1497402
  14. J. H. Chun, K. H. Ra, N. Y. Kim, Langmuir adsorption isotherms of over-potentially deposited hydrogen at poly-Au and Rh/$H_{2}SO_{4}$ aqueous solution interfaces: Qualitative analysis using the phase-shift method, J. Electrochem. Soc., 150, E207 (2003) https://doi.org/10.1149/1.1554919
  15. J. H. Chun, K. H. Ra, N. Y. Kim, Abstracts of the 203rd Electrochemical Society (ECS) Meeting, Vol. 2003-01, Abstract 1270, April 27-May 2, The Electrochemical Society, Paris, France, 2003
  16. J. H. Chun, S. K. Jeon, N. Y. Kim, Abstracts of the 203rd Electrochemical Society (ECS) Meeting, Vol. 2003-01, Abstract 2332, The Electrochemical Society, April 27-May 2, Paris, France, 2003
  17. J. H. Chun, Methods for estimating adsorption isotherms in electrochemical systems, U S. Patent, 6613218 (2003)
  18. J. H. Chun, N. Y. Kim, Hydrogen treatment of materials. Proceedings of the 4th international conference: HTM-2004, pp. 387-393, International Scientific Committee on Hydrogen Treatment of Materials (HTM), May 17-21, Donetsk-Svyatogorsk, Ukraine, 2004
  19. J. H. Chun, S. K. Jeon, J. Y. Chun, Constant correlation factors between Temkin and Langmuir or Frumkin adsorption isotherms in electrochemical systems, J. Korean Electrochem. Soc., 7, 194 (2004) https://doi.org/10.5229/JKES.2004.7.4.194
  20. J. H. Chun, S. K. Jeon, B. K. Kim, J. Y. Chun, Determination of the Langmuir adsorption isotherms of under- and over-potentially deposited hydrogen for the cathodic $H_{2}$ evolution reaction at poly-Ir/aqueous solution interfaces using the phase-shift method, Int. J. Hydrogen Energy, 30, 247 (2005) https://doi.org/10.1016/j.ijhydene.2004.03.037
  21. J. H. Chun, S. K. Jeon, K. H. Ra, J. Y. Chun, The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic $H_{2}$ evolution reaction at poly-Re/aqueous solution interfaces, Int. J. Hydrogen Energy, 30, 485 (2005) https://doi.org/10.1016/j.ijhydene.2004.04.012
  22. J. H. Chun, S. K. Jeon, N. Y. Kim, J. Y. Chun, The phase-shift method for determining Langmuir and Temkin adsorption isotherms of over-potentially deposited hydrogen for the cathodic $H_{2}$ evolution reaction at the poly-Pt/$H_{2}SO_{4}$ aqueous solution interface, Int. J. Hydrogen Energy, 30, 1423 (2005) https://doi.org/10.1016/j.ijhydene.2004.12.005
  23. J. H. Chun, N. Y. Kim, The phase-shift method for determining adsorption isotherms of hydrogen in electrochemical systems, Int. J. Hydrogen Energy, 31, 277 (2006) https://doi.org/10.1016/j.ijhydene.2005.04.029
  24. J. H. Chun, S. K. Jeon, J. Y. Chun, Determination of the Langmuir and Temkin adsorption isotherms of H for the cathodic $H_{2}$ evolution reaction at a Pt/KOH solution interface using the phase-shift method, J. Korean Electrochem. Soc., 9, 19 (2006) https://doi.org/10.5229/JKES.2006.9.1.019
  25. J. H. Chun, S. K. Jeon, J. Y. Chun, The phase-shift method and correlation constants for determining adsorption isotherms of hydrogen at a palladium electrode interface, Int. J. Hydrogen Energy, 32, 1982 (2007) https://doi.org/10.1016/j.ijhydene.2006.08.031
  26. K. Kvastek, V. Horvat-Radosevic, Comment on the paper 'Langmuir adsorption isotherms of over-potentially deposited hydrogen at poly-Au and Rh/$H_{2}SO_{4}$ aqueous solution interfaces: Qualitative analysis using the phase-shift method', J. Electrochem. Soc., 151, L9 (2004) https://doi.org/10.1149/1.1783910
  27. A. Lasia, Comments on 'The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic $H_{2}$ evolution reaction at poly-Re/aqueous solution interfaces. Hydrogen Energy, 30 (2005) 485-499', Int. J. Hydrogen Energy, 30, 913 (2005) https://doi.org/10.1016/j.ijhydene.2004.04.012
  28. J. H. Chun, K. H. Ra, N. Y. Kim, Response to comment on 'Langmuir adsorption isotherms of over-potentially deposited hydrogen at poly-Au and Rh/$H_{2}SO_{4}$ aqueous solution interfaces: Qualitative analysis using the phase-shift method', J. Electrochem. Soc., 151, L11(2004) https://doi.org/10.1149/1.1783911
  29. J. H. Chun, S. K. Jeon, N. Y. Kim, J. Y. Chun, Response to comments on 'The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic $H_{2}$ evolution reaction at poly-Re/aqueous solution interfaces. Hydrogen Energy, 30 (2005) 485-99', Int. J. Hydrogen Energy, 30, 919 (2005) https://doi.org/10.1016/j.ijhydene.2004.04.012
  30. M. R Tarasevich, A. Sadkowski, E. Yeager, in Comprehensive treatise of electrochemistry, B. E. Conway, J. O' M. Bockris, E. Yeager, S. U. M. Khan, R. E. White, Editors, Vol. 7, pp. 301-398, Plenum Press, New York (1983)
  31. E. Gileadi, Electrode kinetics, pp. 172-177, VCH, New York, 1993
  32. J. O'M. Bockris, S. U. M. Khan, Surface electrochemistry, pp. 344-345, Plenum Press, New York, 1993
  33. E. Gileadi, E. Kirowa-Eisner, J. Penciner, Interfacial electrochemistry, pp. 6, 72-73, Addison-Wesley Pub. Co. Reading, MA, 1975
  34. E. Gileadi, E. Kirowa-Eisner, J. Penciner, Interfacial electrochemistry, pp. 86-93, Addison-Wesley Pub. Co. Reading, MA, 1975
  35. E. Gileadi, Electrode kinetics, pp. 293-303, VCH, New York, 1993
  36. E. Barsoukov, J. R. Macdonald, Eds., Impedance spectroscopy, 2nd Ed., pp. 489-493, Wiley-Interscience, New York, 2005
  37. E. Gileadi, Electrode kinetics, pp. 261-280, VCH, New York, 1993
  38. J. O'M. Bockris, S. U. M. Khan, Surface electrochemistry, pp. 280-283, Plenum Press, New York, 1993
  39. J. O'M. Bockris, A. K. N. Reddy, M. Gamboa-Aldeco, Modern electrochemistry, 2nd Ed., Vol. 2A, pp. 1193-1194, Kluwer Academic/ Plenum Pub. Co. New York, 2000
  40. D. W. Oxtoby, H. P. Gillis, N. H. Nachtrieb, Principles of modern chemistry, 5th Ed., p. 446, Thomson Learning Inc. 2002
  41. E. Gileadi, Electrosorption, pp. 1-18, in: E. Gileadi (Ed.), Plenum Press, New York, 1967
  42. E. Gileadi, Electrode kinetics, pp. 307-318, VCH, New York, 1993