스펙트럼 파랑모형에서의 쇄파모형

Modeling of Wave Breaking in Spectral Wave Evolution Equation

  • 발행 : 2007.08.31

초록

주파수영역에서 쇄파로 인한 에너지 소산에 관한 그 동안의 논쟁은 주파수의 함수인 소산항의 구체적 형태를 중심으로 진행되어왔다. 본 연구에서는 추계학적 쇄파모형과 이에 기초한 스펙트럼으로부터 소산항을 유추하였다. 기존의 인식과는 상이하게 소산항은 주파수의 삼차함수인 것으로 판단된다. 검증작업은 SUPERTANK Laboratory Data Collection Project(Krauss et al., 1992)에서 축적된 실험자료를 기초로 진행되었다. 추가적인 검증을 위해 단조해안에서의 Cnoidal 파랑의 천수과정을 스펙트럼 파랑모형과 제시된 쇄파모형을 차용하여 수치모의하였다. 그 결과 쇄패대역에서 진행되는 파랑의 왜도와 비대칭성의 진화과정이 비교적 정확히 모의되는 성과를 얻었다.

There is still a controversy going on about how to model energy dissipation due to breaking over frequency domain. In this study, we unveil the exact structure of energy dissipation using stochastic wave breaking model. It turns out that contrary to our present understanding, energy dissipation is cubically distributed over frequency domain. The verification of proposed model is conducted using the acquired data during SUPERTANK Laboratory Data Collection Project (Krauss et al., 1992). For further verification, we numerically simulate the nonlinear shoaling process of Conoidal wave over a beach of uniform slope, and obtain very promising results from the viewpoint of a skewness and asymmetry of wave field, usually regarded as the most fastidious parameter to satisfy.

키워드

참고문헌

  1. Abramowitz, M. and Stegun, I.A. (1968). Handbook of mathematical functions. Dover, Mineola, NY
  2. Battjes, J.A. (1974). Computation of set up, long shore currents, run up and overtopping due to wind generated waves. Communication on Hydraulics No. 74-2, Dept. of Civil Engineering, Delft University of Technology, Delft, The Netherlands
  3. Borgman, L.E. (1965). A statistical theory for hydrodynamic forces on objects, Technical report HEL-9-6, Hydraulics Engineering Laboratory, University of California, Berkeley, Calif
  4. Bur Hansen, J. and Svendsen, I.A. (1979). Regular waves in shoaling water, experimental data. Series paper 21, Inst. Hydr. Engrg., Tech. Univ. Denmark
  5. Cartwright, D.E. and M.S. Longuet-Higgins (1956). The statistical distribution of the maxima of random function. Proc. Roy. Soc. London, Ser. A, Vol. 237, pp. 212-232
  6. Cayley, A. (1895). An elementary treatise on elliptic functions. Deighton, London, England; reprinted by Dover Publications, Inc., New York, N.Y
  7. Chen, Y., Guza, R.T. and Elgar, S. (1996). Modeling breaking surface waves in shallow water, J. Geophys. Res.- Oceans, Vol. 102, No. 11, pp. 25035-25046
  8. Cho, Y. (1993). Breaking directional wave spectrum in water of variable depth in the presence of current, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 5, No. 2, pp. 76-83
  9. Elderberky, Y. and Battjes, J.A. (1996). Spectral modeling of wave breaking: application to Boussinesq equations, Journal of Geophysical Research, Vol. 102, pp. 1253-1264
  10. Elgar, S., Gallagher, E.L. and Guza, R.T. (2001). Nearshore sandbar migration. Journal of Geophysical Research., Vol. 106, 11,623-11,627
  11. Flick, R.E., Guza, R.T. and Inman, D.L. (1981). Elevation and velocity measurements of laboratory shoaling waves. Journal of Geophysical Research, Vol. 86, pp. 4149-4160 https://doi.org/10.1029/JC086iC05p04149
  12. Huang, N.E., Long, S.R., Tung, C.C. and Yuen, Y. and Bliven, L.F. (1981). A unified two parameter wave spectral model for a general sea state, Journal of Fluid Mechanics, Vol. 112, pp. 203-224 https://doi.org/10.1017/S0022112081000360
  13. Kaihatu, J. and Kirby, J. (1995). Nonlinear transformation of waves in finite water depth, Physics of fluids, Vol. 7, No. 8, pp. 1903-1914 https://doi.org/10.1063/1.868504
  14. Kirby, J.T. (1997). Nonlinear, dispersive long waves in water of variable depth in gravity waves in water of finite depth, J. N. Hunt(ed), Advances in fluid mechanics, 10, Computational Mechanics Publications, pp. 55-125
  15. Kirby, J. and Kaihatu, J. (1996). Structure of frequency domain models for random breaking wave breaking, Proceedings of the 25th International Conference on Coastal Engineering, Orlando, Fl
  16. Kraus, N.C., Smith, J.M. and Sollitt, C.K. (1992). SUPERTANK laboratory data Collection project, Proceedings of the 23rd Coastal Engineering Conference, ASCE, pp. 2191- 2204
  17. Mase, H. and Kirby, J.T. (1992). Hybrid frequency domain KDV equation for random wave transformation, Proc. 23rd Intl. Conf. Coast. Engrng., Venice, pp. 474-487
  18. Mei, C.C. (1989). The applied dynamics of ocean surface waves. World Scientific Publishing Co
  19. Ochi, M.K. (1992). Applied probability and stochastic processes, John Wiley and Sons
  20. Ochi, M.K. and Tsai, C.H. (1983). Prediction of occurrences of breaking waves in deep water, Journal of Physical Oceanography, Vol. 13, pp. 2008-2019 https://doi.org/10.1175/1520-0485(1983)013<2008:POOOBW>2.0.CO;2
  21. Papoulis, A. (1965). Probability, random variables and stochastic processes, McGraw-Hill book Co., New York, NY
  22. Phillips, O.M. (1977). Dynamics of the upper ocean, 2nd ed., Cambridge University Press, London
  23. Thornton, E.B. and Guza, R.T. (1983). Transformation of wave height distribution, J. Geophys. Res., 88, pp. 5925-5938 https://doi.org/10.1029/JC088iC10p05925
  24. Vengayil, P. and Kirby, J. (1986). Shoaling and reflection of nonlinear shallow water waves, Proc. 20th International Conference of coastal engineering, Teipei, pp. 794-806