참고문헌
- Abramowitz, M. and Stegun, I.A. (1968). Handbook of mathematical functions. Dover, Mineola, NY
- Battjes, J.A. (1974). Computation of set up, long shore currents, run up and overtopping due to wind generated waves. Communication on Hydraulics No. 74-2, Dept. of Civil Engineering, Delft University of Technology, Delft, The Netherlands
- Borgman, L.E. (1965). A statistical theory for hydrodynamic forces on objects, Technical report HEL-9-6, Hydraulics Engineering Laboratory, University of California, Berkeley, Calif
- Bur Hansen, J. and Svendsen, I.A. (1979). Regular waves in shoaling water, experimental data. Series paper 21, Inst. Hydr. Engrg., Tech. Univ. Denmark
- Cartwright, D.E. and M.S. Longuet-Higgins (1956). The statistical distribution of the maxima of random function. Proc. Roy. Soc. London, Ser. A, Vol. 237, pp. 212-232
- Cayley, A. (1895). An elementary treatise on elliptic functions. Deighton, London, England; reprinted by Dover Publications, Inc., New York, N.Y
- Chen, Y., Guza, R.T. and Elgar, S. (1996). Modeling breaking surface waves in shallow water, J. Geophys. Res.- Oceans, Vol. 102, No. 11, pp. 25035-25046
- Cho, Y. (1993). Breaking directional wave spectrum in water of variable depth in the presence of current, Journal of Korean Society of Coastal and Ocean Engineers, Vol. 5, No. 2, pp. 76-83
- Elderberky, Y. and Battjes, J.A. (1996). Spectral modeling of wave breaking: application to Boussinesq equations, Journal of Geophysical Research, Vol. 102, pp. 1253-1264
- Elgar, S., Gallagher, E.L. and Guza, R.T. (2001). Nearshore sandbar migration. Journal of Geophysical Research., Vol. 106, 11,623-11,627
- Flick, R.E., Guza, R.T. and Inman, D.L. (1981). Elevation and velocity measurements of laboratory shoaling waves. Journal of Geophysical Research, Vol. 86, pp. 4149-4160 https://doi.org/10.1029/JC086iC05p04149
- Huang, N.E., Long, S.R., Tung, C.C. and Yuen, Y. and Bliven, L.F. (1981). A unified two parameter wave spectral model for a general sea state, Journal of Fluid Mechanics, Vol. 112, pp. 203-224 https://doi.org/10.1017/S0022112081000360
- Kaihatu, J. and Kirby, J. (1995). Nonlinear transformation of waves in finite water depth, Physics of fluids, Vol. 7, No. 8, pp. 1903-1914 https://doi.org/10.1063/1.868504
- Kirby, J.T. (1997). Nonlinear, dispersive long waves in water of variable depth in gravity waves in water of finite depth, J. N. Hunt(ed), Advances in fluid mechanics, 10, Computational Mechanics Publications, pp. 55-125
- Kirby, J. and Kaihatu, J. (1996). Structure of frequency domain models for random breaking wave breaking, Proceedings of the 25th International Conference on Coastal Engineering, Orlando, Fl
- Kraus, N.C., Smith, J.M. and Sollitt, C.K. (1992). SUPERTANK laboratory data Collection project, Proceedings of the 23rd Coastal Engineering Conference, ASCE, pp. 2191- 2204
- Mase, H. and Kirby, J.T. (1992). Hybrid frequency domain KDV equation for random wave transformation, Proc. 23rd Intl. Conf. Coast. Engrng., Venice, pp. 474-487
- Mei, C.C. (1989). The applied dynamics of ocean surface waves. World Scientific Publishing Co
- Ochi, M.K. (1992). Applied probability and stochastic processes, John Wiley and Sons
- Ochi, M.K. and Tsai, C.H. (1983). Prediction of occurrences of breaking waves in deep water, Journal of Physical Oceanography, Vol. 13, pp. 2008-2019 https://doi.org/10.1175/1520-0485(1983)013<2008:POOOBW>2.0.CO;2
- Papoulis, A. (1965). Probability, random variables and stochastic processes, McGraw-Hill book Co., New York, NY
- Phillips, O.M. (1977). Dynamics of the upper ocean, 2nd ed., Cambridge University Press, London
- Thornton, E.B. and Guza, R.T. (1983). Transformation of wave height distribution, J. Geophys. Res., 88, pp. 5925-5938 https://doi.org/10.1029/JC088iC10p05925
- Vengayil, P. and Kirby, J. (1986). Shoaling and reflection of nonlinear shallow water waves, Proc. 20th International Conference of coastal engineering, Teipei, pp. 794-806