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TEMPORAL AND SPATIAL DECAY RATES OF
NAVIER-STOKES SOLUTIONS IN EXTERIOR DOMAINS

HyeEoNG-OHK BAE AND BuMm JA JIN

ABSTRACT. We obtain spatial-temporal decay rates of weak solutions of
incompressible flows in exterior domains. When a domain has a boundary,
the pressure term yields difficulties since we do not have enough infor-
mation on the pressure term near the boundary. For our calculations we
provide an idea which does not require any pressure information. We
also estimated the spatial and temporal asymptotic behavior for strong
solutions.

1. Introduction

Let Q be the exterior of a simply connected set with C? boundary in R3
which contains the origin and is contained in a unit ball. Let u and p be
the velocity and the pressure, respectively, of the incompressible fluid in the
exterior domain. We consider the Navier-Stokes equations described in Q:

(1.1) Zu-Au+(u-V)ju+Vp=0
) V-u=0

with no slip boundary condition
u(z,t) =0 for (z,t) € 0Q x (0, 0),

zero velocity condition at space infinity, and the initial data

n (z,t) € Q x (0, 00)

u(z,0) = ug(x) for z € Q.

For the stability and asymptotic analysis, we have been interested in estimat-
ing decay rates of solutions. Temporal decay estimates have been considered
by Miyakawa and Schonbek [27], Miyakawa [25], Schonbek [29], Wiegner {32],
ete, for the whole space; Miyakawa and Fujigaki [13], Bae and Choe [4], Bae
[1, 3] for the half space; Miyakawa [26], Iwashita[20], Kozono [21], etc, for the
exterior domain. Spatial decay estimates has been considered by He [15], He
and Xin [18], Takahashi [31], Brandolese [9], Bae and Jin [5, 6] for the whole
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space; Bae [2] for the half space; Farwig and Sohr [11, 12], He and Xin [17] for
the exterior domain.

While the temporal decay rate of solutions is almost completely well known
for the whole space, half space, and the exterior domain, the spatial decay
estimate is not yet well studied for the domain with nonempty boundary such
as exterior domain problem. In this paper, we intend to derive spatial-temporal
decay estimates of weak and strong solutions of Navier-Stokes flow in exterior
domains.

Weak solutions globally in time have been constructed by several mathe-
maticians such as Leray [24], Hopf [19], etc. The uniqueness or the existence
of a strong solution has been known only for small data or for a large viscosity
(which is not described here). For the partial regularity, the stability estimate,
and the localization, an idea of the suitably weak solution is useful: constructed
initially by Scheffer [28], by Caffarelli, Kohn and Nirenberg [10] for bounded
domains or R?, and by Galdi and Maremonti [14] for an exterior domain. (See
also Seregin [30].) In this paper, we follow the construction in [14] for the
weak solution. Throughout this paper, a weak solution means a suitably weak
solution.

If we try to have spatial decay estimates for the weak solution via the energy
method, we might meet the following integral identity:

(1.2) /Qqu(u-V)pd:c: —»/Qp(u-V)qudm,

where ¢ is a weight function (1 + |z|?)*.

As it is seen in (1.2), the pressure term must be treated. When the whole
space R? is concerned, a pressure representation in terms of the velocity func-
tion is useful. From the pressure representation, we have seen that the effect
of the pressure p is almost the same as the square of the velocity |ul?2. The
situation is not simple when a domain with nonempty boundary is involved.
Unfortunately, the pressure has non-local property and we don’t have enough
information on the pressure near the boundary. This fact makes it difficult to
derive norm estimates when the boundary is involved.

In this paper, we suggest an idea treating energy estimates for the domain
with a nonempty boundary, and we avoid the computations involved with the
pressure term.

Our main idea is explained as follows: Suppose ¢ be a weight function
vanishing near the boundary. We introduce an auxiliary vector field v defined
by v = [, W;_—yl[w x u)(y)dy. Instead of taking inner product by ¢u to the

pressure term, we take inner product by V x {(¢v) to get the identity
/ V x (¢v) - Vpdz = —/ pdivV X (¢v)dz = 0.
Q Q

In section 2.2, we will see V x (¢v) behaves almost like ¢?u.
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In Section 2, we have used the energy method after removing the pressure
term by a special form of a test function as above, and then obtain the temporal
decay of |||z|u(t)||r2(q) for the weak solutions.

In Section 3, we obtain the decay estimates |||z{>u(t)||r», p > 3, for strong
solutions. We are indebted to He and Xin [17] in the sense that the main
difficulties in Section 3 have been overcome by removing the pressure term
with a slight modification of the idea in [17].

We state our main theorems below, of which proofs are the main objectives
of the subsequent sections.

Theorem 1.1. Let ug € L™ ()NL3(Q) with 1 < r < 6/5, and |z|ug € LY*(Q),
lz|?up € L2(2) and V -ug = 0. Then there is a weak solution u of the Navier-
Stokes equation (1.1) satisfying the following asymptotic property: for anyd > 0
there is a positive constant cs independent of t such that

llzla)z2@) < cs(1+ £)imto,
Here, cs depends on & > 0 and also on the initial velocity.

Theorem 1.2. Let 1 <1 < 6/5 and let 3 < p < 0o. Let up € L" N L3 with
V-ug = 0 and |z|?ug, |zjug € L" |z|ug € L%, |z|?ug € L3(Q). Suppose that
u is a strong solution of the Navier-Stokes equations (1.1). Then we have the
following spatial-temporal decay rates: for any & > 0 there is cs so that

lzl*ull s < est'™ 2945 for large .

Throughout this paper, the constants ¢, c1,c, or cs, etc, depend on ug as
well as the subscripts because all the previous results for the temporal decay
have been obtained concerning to ug.

Remark 1.3. In (1.3), the inequality holds for » = 1, but in this case ug must
have some differentiability (refer to [21], [7, 8]), where the optimal decay rate
is obtained by [Ju(t)||zz = O(t~%) for ug € L' N L2 N D(AS). Refer to [21] for
the definition of D(AS). Thereby our Theorem 1.1 and Theorem 1.2 could be
true for r = 1, if up € L' N L2 N D(45).

As far as an exterior domain is concerned, the temporal decay rates of the
solution (weak for 1 < p < 2, strong for 3 < p < o0) of the Navier-Stokes
equation are well known.

Ifuy € L" N L?, with 1 < r < 2, then for r < q < 2, weak solutions satisfy
(1.3) la(®)llzeey < e +8)7364,

For details, refer to [7, 8, 21]. In Section 3, the above result for the weak
solution will be used for our estimate.

In [16, 20, 22, 32], it is shown that strong solutions exist in L? for all times
provided that ug is small in L3. Furthermore, it is also shown that for ug € L3

3r1
3

Ju(t)llze < ct™5G72)  for 3< g < oo, t>0;
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forug € L3N L™
la(@)lze <t 3¢9 forl<r<g<oo, t>1.
The above two estimate can be written at a time as follows:
(1.4) JJu(t)|lpe < ct 3G D(1+6)73G"3) fori<r< 3<g<oo, t>0.

In Section 3, the above result for the strong solution will be used for our
estimate .

Throughout this paper this paper, we use the notation || - ||, = || - || zr(q) for
short.

2. Proof of Theorem 1.1

In this section we consider the decay rates of weak solutions with weight
(1 + |z|>)2/2 of the Navier-Stokes equations.

2.1. Suitable weak solutions

We consider suitable weak solutions for our estimates, and for the definition
we refer to [14] or [30]. We consider the approximate solutions u, M =
1,2,..., of (1.1) with initial data up € L"NL* 1 < r < 6/5, and divug = 0,
of the following equations:

%UM—AuM+(UM-V)uM+VpM:O, t>0,

(2.1) V.uM =0,
llM(O) = up,
where

UMt = [ s @ (@ = v,y

is a (spatial) mollification of u™ in [14]. The mollifier J is defined by J.(z) =

e=3J(z/€), where J(z) = Cexp(1/(|z|2—1)) if || < 1, and J(z) = 0 otherwise.

The constant C' is selected so that [p, J(z)dx = 1. The zero extension of the

function u® is denoted by @. The solution u™ has the following properties:

(a) u™ exist uniquely in L2(0,7; W2(Q))NL>(0,T; L2(Q)) for all T > 0.

(b) UM and their derivatives are continuous and bounded (for each fixed

M € N, but not uniformly in M) on R® x [0,7], T > 0, and satisfy
V.UM =0 and

IU¥ @, < ju™ @),  forallp>1,

where the generalized Minkowski’s inequality is used.

(c) There is a subsequence of u™ which converges in L2 (Q x [0, 0)) to a

weak solution of the Navier-Stokes equations (1.1).
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(d) Forallt >0,

t
™ ()2 + 2 / [VuM (7)|2dr = up2.

We recall that for the cases of bounded domains or R3 in [10], UM is the
retarded mollification UM of u™ defined by

0w, =67 [ [ btu/8,5/075% -y t-s)ayds,  6=M",
where 1 is a smooth function with ¢ > 0,
/ Pdxdt = 1, and supp?¥ C {(z,t) : |z]* < t, 1 <t < 2},

and UM is the zero-extension of the function u™ which is originally defined for
t>0.

In the following, we write U = UM, u = u™ and p = p™ for simplicity.
The estimates derived below are uniform in M, hence the desired results are
obtained through passage to the limit M — oo.

2.2. Preliminary estimates

Let N be the fundamental function of —A, that is, N := N(z—y) := L -2

T drm eyl
Set ¢r(z) := |z?x2(|z])[1 — xr{|Z|)]?, where ¥ is a nonnegative cut-off function
with x € C*[0,00), x(s) = 0 for s < 1, x(s) = 1 for s > 2, and we define
xr(s) = x(&)-

Observe that ¢z = O(|z|*) as |z| — oo uniformly in R, and that |V¢g| <
¢ }{2, V2¢r = O(1) as |z| — oco. For |8] > 3, VP¢g is compactly supported
in the annulus D; U Dg, where D; = B;\B; and Dg = Bag\Bg, moreover,
[V3¢r| < % on Dp. Here, B; means the ball of radius ¢ centered at the origin.

We introduce an auxiliary vector field v defined by

vi(@)i= [ NG = 9)én)(¥ x w)@))dy = N < [or¥ x ]

By the definition of vg we have —Avg = ¢rV X u. Moreover,

(2.2) VXvg= /Q N(z —y)V x [¢r(V x u)[{y)dy = ¢ru+ Ro g,
where
(2.3) Ror:=VNx[(u-V)pr] -V x Nx[(Vor) x u].
The above identity comes from the following observations:
V x [¢r)(V x u)(y)] =V x [V x (¢ru)] = V x [(Vr) x u]
= —A(¢ru) + V[(u-V)¢r] — V x [(Vér) x u].
By Gagliardo-Nirenberg-Sobolev inequality, we have for 1 < p < %

IVallap/3-20) < ellVVRl3p/3-p) <l V2VRIlp,
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and for 1 <p<3
IRo,ll3p/(3-p) < cllVRo,El|p.
On the other hand, by the Calderon-Zygmund inequality,

||V2N * fllp <cllfllp, 1< p<oo.

Combining the Gagliardo-Nirenberg-Sobolev inequality and the Calderon-Zyg-
mund inequality for v and Rg g, we have the following lemmas.

Lemma 2.1. For 1 <p< g,

IVRllap/(3-20) < cllorVullp.
Lemma 2.2. For 1 <p<3,

2

Ro,rll3p/3-p) < cllugy*llp-
Lemma 2.3.
(2.4) lugk (13 < cllullalicur] vl + clul?.
FPurthermore, we also have

2
(2.5) lugi 213 < cllgrVullzullss + clulZs.

Proof. Since u¢r = curl vg — Ry g, we have
lagr 213 = llu - (ugr)ll < cllullzllcurl vz + Julls/sIRo,zlls

| i
< clluflzllcurl vijlz + cllullg/slludk 2.

By Young’s inequality there is ¢, so that
y

cllullo/slugy*lla < ellugyl I3 + ccllull3.

Taking € small enough we complete our proof of (2.4).
For (2.5), we apply Holder’s inequality to get
2
lag/*13 < lorullslulless < el V(drw)2lulles
1/2
< cllgrVullzlulles + clloy “ullulle/s
1/2

< ellgif ull3 + clérVallzlulless + ccllull?s
for some constant ¢, depending on e. Now take € < 1/2. O
2.3. Spatial decay estimates of weak solution

We now ready to show the decay estimates; for any 6 > 0, there is ¢s so that
(1+ )72 +5G =579 |z]ull2 < ¢5 uniformly in ¢ > 0.
Equivalently, we will show
1+ t)_%+%(%_%)_5|| ¢%2u||2 < ¢s uniformly in R, t,
where ¢r(z) = |z>x*(z)[1 — x(%)]*.
Consider vy defined in the previous subsection.
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Proposition 2.4,
(1+ t)_%Jr%_‘churl vr(t)|2 < ¢s5 uniformly in R, t.

By combining (2.4) in Lemma 2.3 and Proposition 2.4, and by applying the
well known temporal decays to |lull¢/5, we obtain our main estimates for the
weak solutions in Theorem 1.1.

From now on in this subsection, we concentrate ourselves on the proof of
Proposition 2.4. In order to show this, multiply (2.1); by V x (¢rvr). Since

/Q (V9) - [V x ($rvi)lde =0,

we have

/ Bpu- [V x (prve)|ds + / (U V)u - Au] - [V x (prva)]dz = 0.
Q Q

Before proceeding further, we’d rather mention our strategy that

(1) from the above identity, by tedious and long calculations we will finally
obtain the inequality (2.7), and

(2) we apply Gronwall’s inequality to get our estimates for |[Vvg||2 at the
end of this section.

Now we return to our proof. Integrating by parts, we first observe that

/atu~ [V % (¢rVvr)]dz = d% u- [V x (¢gvr)|dz — /u- [V x (prO;vR))dz.

Note that
/ u - [V X (¢R(9tVR)]dl‘ = /(¢RV X u) . 8thdx
Q Q

= [6av ) ([ N@-9ion@)7 x duty)ldy) de
- / (659 xw) - ( / N(z ~9)[énV x (Au — (U - V)u)dy ) da
_ / ( / N(z - y)[¢rV x u(a)lds) - (¢rY x (du— (U V)u) )dy
= /VR -[@rV x (Au— (U - V)uldy = /[V X (¢prvr)] - (Au— (U - V)u)dz.
With the previous calculations, we have
d
26) G [V x@avalde+2 [(U- V)]V x Grvr)ds
- 2/(Au) -V x (¢RVR)dZII = 0.
Define X (t) and Y (¢) by
X(t) = /Qu~ [V x (prvr)ldz, Y(t)= /ch%Wu]?dm.
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Note that Vg(t) is defined in R and X (¢) = [|[Vvg(t)[|2gs) since

X(t) = / 0.V x ($rve)dz = / (6aY x 1) - vidz = — / (Avr) - vads.

Lemma 2.5.
LX) +Y(0) < e(llul + [Vl + ul3?) X ¢) + cju 30
(2.7) +cllull3 + cllullz + cllull3 + cllullf/s + cllVul3
+ c|[Vullz|fullz[lullf /5.
Proof. Considering the identity
V x (¢rVR) = ¢pu+ ¢rRo,r + (Vér) X VR,
the above identity (2.6) becomes the following identity

d
EX(t)+2y(t) :/|u|2A¢>f{dx+/|u|2(U-V)¢%dx

o 2 (s (90 v

+2 / u- ((U WV)prRo g + (VoR) X vR])dx
— [+ T+ +1IV.

Recall —Avg = ¢V x u and ~ARgy g = V[(u- V)¢pr] — V x [(Vér) X u] to
get

A(¢rRo,r) = (A¢r)Ro,r + 2(0:6r)(0:Ro,r)
— ¢r(VI(u- V)¢r] - V x [(Vor) x u)),
Al(Vor) x vi] = (VAPR) x VR + 2(VO;pr) X (0;vr) — ¢r(Vor) X (V x u).
So, Il can be replaced by the following terms:

I=-2 / pru- (Vi(u-V)or] - V x [(Vér) X u] + (Vo) x (V x u) ) dz
+2 / u ((A¢R)RO,R +2(0i68)(O:Ro.r) + 2(VOidr) X (a,-vR))dx
+ 2/u- [(VA¢Rr) x vgldz = H; + I, + 5.
By integrations by parts, l[; can be rewritten by
I =2 / ((w-Vér)? +[(Vér) x ul® +265(Vgr) - [a x (V x w)])dz.
From the vector identity

ux(Vxu) = %Vlul2 —(u-V)u,
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the last term of I is equal to
[ 26n(F0m) - fu x (v x wide = [ (Vo) - [VIu? - (u- Vyu]de
- / A + /u (u- V)Vé3dz.
Hence I + I is equal to
[+ = 2/ ((u- Vor)? + [(Vor) x w2 + - (u- V) V63 ).
Therefore, I and I + M, are bounded by

I+ I, | < ¢l ul2,
1) < cllgrullsully|Ull2 < e V(gru)l3 |ul3?

3/2 3/2 1/2 3/2 3/2
< cllgrVully*ully + cléy *ully ]3>,

Recalling VA¢gr has a compact support in the set Dy U D, where D; =
BQ\Bl and DR = BQR\BR, with |V3¢R} S % on DR, we have

C
[ < cllvrllsllallLe/sp,) + EIIVRIIelluHLg(DR)
1
< | Vvrllzllullzp,y + el VVrlzlullLz(pgy < eX ()2 [|ull2.
Applying the estimates for vg, Ro g in Lemma 2.1, 2.2 to Ml>, we have
|| < cllulle/s|Ro,zlls + cllo “ull2l|VRo rllz + cllulls/s 1 Vvalls
1/2 1/2
< cllulle/sligy “ullz + cllgy *ull3 + cllulle/sllé Vull2.

Since

(U -V)[¢rRo,r + (Voér) X VR]
=Ror(U-V)or + ¢r(U - V)Ror
+ (U - V)Vé¢r] x vi +(Vor) x [(U - V)vg],

IV can be rewritten by
IV =2 / u- (RO,R(U V) + r(U - V)RO,R)da:
+2/u- ((wR) x [(U - V)VR])da:

+2/u- (10 - 9)Vgr] x vi)dr = Wi + Vs + IV,
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Applying the estimates for vg, Ro g in Lemma 2.1, 2.2 to IV;, IV, we have
11| < cllgrulls*lully > |Ul121Ro,rlls + cllorulls|U 5 U152 VRo,z]l2
<l V(grw)ly *[ully* oy *ullz + e Vigrw) 2 Vully * a3/ ¢ *ull2
< cllgi*ull3 2 ally® + clerVuly*luly? |6 x ull
+cllog ulZIvully?lully + clorVullzl Vully*[[ully* ¢} *ull2,
1l < eligrully[lully U2V vElls < | V(grw)ly  lully [ ¢rVull
< o *ully* ully * 6 Vullz + clorVull Y [ull,
[Vs| < cllullg a3 ?[[valls < cllTully?ully*[ Vvl

< ol|Vully?ully X (2)%.

In the above, we used the fact ||U||, < c||ul|, since U is a mollification of u.
Therefore, combining the estimates of I, I, I and IV, and recalling Y
l6rVu||2, our identity (2.8) is transformed to the inequality

d
ZX®+2Y(0)

< clull*Y¥4(0) + cljully* o *ull2Y /4 (1)
+o((lullsss + Il ok ulls”® + lrally 1 wully g >ull2 ) Y /2(2)

+cllp 2l + clluls 2oy a3 + cllullssllo *ulls

+cf| V|32 |[ully 2o *ul + e Vally *llully 2 X () + cllull X ()3
By Young’s inequality we have

lallyY3/4(t) < €Y (£) + cllullé,

Fally 163 ull2Y 74(t) < €Y (#) +ce (165 a3 + [[ullg),

(Ialless + Ity 167 >ally + ally 21w ally 163 *ulla ) /2t

< ¥ (t) + cc (Ialld s + i *ul + [l + lullo Vul ey *ul3),

and
Ivully?lully 61 *ull? < l¢x *ull + el Vulls|[ull2ll63 *ull3,

IVully 2 all3 X (8)2 < e|ull3X () + cllull} + ¢| Vull3,
[ull2X ()% < al3°X(t) + [ul5"
for any 0 < a < 1. Recalling (2.4) in Lemma 2.3 we have the inequality
1/2
IVullzlull2lég *ul2 < el Vull2ullz (X (©)2lullz + [luli2;)
< ol Vul3X () + cllulld + c| Vullz][ull2llullZ 5,
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and by (2.5) we also have that
2
6 >ul3 < Y(&)/?|[ulloss + ull25 < €Y' (2) + clull?,s,
Hence we have that for any 0 < a < 1,
1—
X(t) +Y () < c(lu) + IVl + Jul3*) X () + ¢ful2*

+clullz + cllulg + clfull} + cllullf 5 + cll Vull3

dt

+ cllVull2llullz[ullg 5.

Now, we try to apply the well-known Gronwall’s inequality to (2.7).

remind Gronwall’s inequality:

Lemma 2.6. Suppose X (t) satisfies the following inequality
d

pr X(t) < A(t) + B(H) X (1), t>0.

Then one has

t
X(t) < elo B x(0) + / A(s)eld BDdrgs ¢ 0.
0

Now we set
1—
A(t) = clull3" " + cllull + clulls + cllu)§ + clullg /5 + cl| Vul 2
+ ¢ Vullo[ull2]lullf/s

and
B(t) = |[ull3 + [[Vul3 + |[ul|3*.
By (1.3), it is clear that
t
[l + I9ulgds < e

0

and note that
t
| Iteids =ea[1- 1+ 91 00] <

if 3(2 3 <a< lfor1<r < . Therefore, we have

(2.9) /Ot B(s)ds < ¢,

for some positive constant ¢, depending on a.
By (1.3), we again note that

t
/ [l + flall + lull + | Vul3ds < c,
0

557

]
We
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t t
[ 19utelulafulds < o [ 19l + fulg s <
0

and that

%lw

/ lall§ds < e(L +)5r,

We also note that

3(2—nr)a

t
u2(1—a)ds§ca 1482 373 _ 1| <cu(l+¢)F >t
. 2

3(2—r)a
2r

: 5 3(2 r)a
since 5 — = 3 4 222ra

>Oforl<r<5 and1>a>3(2 op
Let ¢ > 0 be given any small number. Since (_22_1)_0, > 1is arbitrary, we can

take a such that -—2——5)—" =1+ 4, so that

34
T

/Wmn1”m<qu+w%
Therefore, for any small § > 0 there is a constant ¢; depending on ¢ and
independent of ¢ such that

34
r

(2.10) / A(s)ds < cs(1+1)2™

Applying Gronwall’s inequality of Lemma 2.6 to (2.7), and by (2.9) and
(2.10), we obtain that

X(t) < cs(14£)277+0
for all ¢ > 0. Here, we need the boundedness assumption on X (0), that is,

lz)%aoll2+]| |:L'|Llo||g < oo by (2.2). We note that the above estimate is uniform
in R. This implies that

IVVR()|3 < cs(1 +t)3~**° uniformly in R,

which completes the proof of Proposition 2.4.
By taking R — oo and with the lower semicontinuity of the norm, we com-
plete the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Let 1 < r < —5@ and 3 < p < oo. In this section, based on the previous

estimate and modifying the idea in [17] we obtain the decay rates for strong
solutions: for any 6 > 0, there is ¢s so that

IlzlPa) ||, < cst* —2G=9 for large t.
Equivalently, we will show
oult < cst 130G+ for large t.
IS

Here, ¢(x) := |2|*x(x).
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3.1. Preliminaries
Lemma 3.1. Forp > 3,

luglly < cllcurtvily + cllul] s_.

Proof. Like (2.3), define Rg by Rg := VN x[(u- V)¢] — V x N « [(V¢) x u].
Since u¢ = curl v — Ry, we have

1

lugll, < cllcurlv(l, + [[Rollp < cllcurl vil, + cfug=]| s .

By Holder’s and Young’s inequalities, there is ¢, so that
1 1 1
[ug?|| s < cllug|izllull?y, < elluglly + cellullsp/s+2p)-
p+3 3+2p
Taking e small enough, we complete the proof. |
Owing to (1.4) and by Lemma 3.1, it is enough to show the following.

Proposition 3.2. Let2<s<xandl <r< g. For any 6 > 0 there is ¢s so
that

IV xv|s < c(;tH'%_%'HS for large t.

Following estimate for the Beta-type function will be useful to the proof of
our proposition 3.2.

Lemma 3.3. Letd< 1, b< 1 and a > 0. Then we have

t max{l—a—b—d,—b} fort>2
—ag—d(p _ o =bge < ¢ ort 2 2,
/0 (1+s) % %t—s)"ds < { P54 for t < 2,

Proof. For t > 2,

/t(l +5) %74t — 5)bds

t £ 1
< ct_a_d/ (t —s)"ds + ct“b/ s s + ct_b/ s~4ds
4 1 0

A e e | B e

For t < 2,

t t
/ (14+8) s %t —s) Pds < / st — 5)7bds < ct' 01,
0 0

Remark 3.4. In the proof of Lemma 3.1, we obtained the inequality
a(®)¢ll, < el curl v(t)|l, + cllu(t)

|| _3p_
3+2p

: 3
On the other hand, the temporal decay rate for [ju(t)|| S s known for 335 >

1, and therefore, we restricted p > 3.
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We compare this observation with the estimate in Theorem 1.1. If we pro-
ceed the same argument to the estimate of |u¢l|lz, we have

u(®)¢ll2 < cllcurl v(#)ll2 + cllu(@)]s-

However, we do not have any previous result for the temporal decay of |u(¢}]| 5.
This is why, only for p > 3, the estimate of ||curl v(t)||, implies directly the
decay estimate of [Ju(t)|z|?|,.

3.2. Integral representation without the pressure term

We consider the fundamental solution for the nonstationary Stokes equation,
(V,Q), V=(V!, V3, V3), Q= (Q"Q% Q% written by

Vi(z) := Vi(z,t) := Ft(x)ei-i-vaa (N xTy)(z), i =1,2,3,

T

and Q(z,t) := —3(t) 2 N. Here, T'(z) := [(z, t) == (4mt)~Fe1oI"/4, N(z) =

ﬁﬁll, and e’ is a standard unit vector of which i-th component is 1. (See

Chapter 4 of [23] for the integral representation by the fundamental solution
of the Stokes equations.) ‘
Set wi(z) = wi(z,t) = (N * I't)(z)e’. We notice that

V x VX w' = —=Aw’ + Vdivw® =Tet + V 9

52, V¥ L) =V,

hence, we have the identity

Vy x [¢(y)vy x wi(x - y7t - T)] = ¢(y)vl('r - yvt - T) + Ri(l‘,y,t - 7—)7
where

Ri(z,y,t —7) =V x Vy, xw'(z —y,t — 7).

It is easy to check that RY = 0 on 1.

We multiply V, x [¢(y)Vy x w'(z — y,t — 7)] to (1.1), and integrate over
Q % (0,¢t — €), and then we have
(3.1)

t—e 8[1 ;
<— —Au+ (u- V)u) “Vy X [@(y)Vy x w'(z —y,t — 7)]dydr
0 Q 67’

- - h [ 9509, < 609, x e .6 - ldyir =o.

Let
R%(Ia Y, t— T) = -2(v¢ ) V)VZ - (A(b)vl
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Taking integration by parts and observing (-8, —A,)V* = 0, the identity (3.1)
becomes

/ C/ uly, Rz (z,y,t —T) — (% +Ay)R§(;p,y,t—r))dydT
+ [ ut=0- 9y x {6)V, x 'l ~ v, o)}y

Q
~ /Quo(y) - Vy x {6y)Vy x [w'(z -y, )] }dy

t—e
- [ [t (6w Ve -t =)+ Riap.t =) dydr
We observe that

lim | u(y,t—e)- Vy x {$(y) wi(z -y, 6)]}dy
e~ Ja

= — Vo x {Nx*[p(y)Vy xu]} - =—(Vyxv)-e& =—(Vy xv);

and
/ uo(y) - Vy x {d(u)Vy x wi(z — 4, t)}dy

_ (vz x [N # {$(y)Vy x uo}] .ei> « Ty = —(Vg x vo)s * T,

where vo = N * [¢(y)Vy x 0o}, and v = N x[¢(y)V, x u]. From (3.2) we obtain
t

t
(Vg X v); = —/ (ujui) () * 8y, L'y dr ——/ (u;u;0y;0)(T) ¥ Ty_rdr
0 0
t
_/0 (ujur@)(T) * Oy, 0y, 0y, (N *T'¢_.)dT
t
- [ w0, 0)(0) £ 0,0, (N + T )ar
1
- [ [t 0, Rt — )y + (9. % vo)i T

t
- / / Wy, 7) - (B, + AR (2, y, ¢ — 7)dydr
0

t
+ / /ll(y,T) ’ RIQ("I", y,t — T)dydT
0

=i+ I+ + IL
From straightforward calculations we have that

18>+B(N « Tomr)lls < cl|0°Tums s < oft — r)= 5 -20=1)

for 1 < s < oo. This estimate will be used in the proof of proposition 3.2.
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3.3. Proof of Proposition 3.2 for 2 < s < 6

Recall the results in the previous section: for any small 1 > § > 0 there is
a constant cs such that

leurlv(#)llz < cs(1+8) 7735+, [llzfu(®)llz < es(1 +)75 .

(Of course, the above estimates holds for ug satisfying the hypothesis of theo-

rem 1.1.)
By the help of the generalized Minkowski’s and Young’s convolution inequal-
ities, and (1.4), we obtain the estimate for I + I4:

t
112 + Llls < /O llu51:0y, bll2s/(s+2) || Te—r |2
+ [|ujurdy; ¢ll2s/(s+2) V(N * Ty_)||2dr

’ t 1 3
(3.3) <e / [ug? s Julls(t - )~ 2dr

IA

¢
05/ (1+7)%_§37+57"%+%(1+T)”%+%(t—7)—%d7'
0
S optmeximiHE SR t>

for 2 < s < oo.
For the estimate of I; + I3, we observe the following inequality by (2.2) and
(1.4)

||ujuk¢||1_2178_s7_s = ||uj(curlv - RO)kH 121?75
< cfluf] g fleurl vilz + cllull ss_[Rolls
< cllull gafleurl vy + cllull_ss_[lug'/?|,

<cst T ET (14 t) T E(L4¢) S TatS
ot TR 41) "I TI(1 4 1)
for 2 < s < 6. Making use of the above inequality and by the help of the
generalized Minkowski’s and Young’s convolution inequalities, we obtain the
following estimates: for 2 < s < 6

(3.4)
11 + I3l

7
st g 19Tl g e

IN

i
< C&/ [T_%Jr%(l ) TR Lot 4 T)_%+%+5] (t—7) Btsdr
0

< o (3= -B44Y 4> 0
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Since 8, R} = V8¢ x V, x w* + V¢ x V, x duw’, by the generalized
Minkowski’s inequality we have

1Eslls < / (ugu x V0;0) % Vy x wi_||sdr

i
+ / H(uju X V) * V, x (9jw2_7_“5d7' =Ji+J2
]

for 1 < s < oo. By Young’s convolution inequality, Jy is estimated as follows
¢ ¢
5 < [ MgV 0s ol Vel < [ B0 aogasopde

T
(35) < (1_*_7-)—3(%_%)(‘[;—T)_%(l_%g)dT
0
SCtmax{Q +2S» 1+25} t>2

for 2 < s < o0.
By the similar reasoning as in I, Is, Is and Iy, Jo is estimated by
(3.6)

t t
O A N | i ey A M R e e

<05/<1+T% Arorbtd (1 4 r)mE e - )~ dar
< ctmax{ 3=+ 6=} ¢ > 9

for 2 < s < 0.
Applying Young’s convolution inequality to Is. we obtain that

I(V xvo) * Tells < [luod|l ([Tl + VN * [uo V|| s |ITs]| _ssr

4sr+3r—3s

sr+r 8

<et™? ;—§)||¢u0||r+ct z l_—)+"’H‘10V¢’“T

for r < s < oo. (Here we note that srj: S ifs>randzs—ﬂf%:§ > 1if

7 < 2%.) Hence, if |z[*uo € L™ and |z|ug € L", then

1

(3.7) I Ts|ls < etmex{=3G=0)=3(=3)43) > 9

forr§33—4‘_°'s, r<s<oo.
Since 0;I' — A,T" = 0, we have that

0wt (x —y,t —7) + Ayw'(z —y,t —7) = N % (=0, + A, T)(z —y,t — 1) = 0.
Hence
(8- + AY)RE(z,y,t — T) = Vyd(y) X Vy X (8rw' + Ayw')(z —y,t —7)
+ 2V, 8y, ¢ X 8, Vy x wi(z =y, t = 7) + VyAyd x Vy x W'z —y,t —7)
=20y, (Vy¢) X 8y, Vy xw'(x —y,t — 7) + VyAyd x Vy x w'(z — y,t — 7).
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Recall VA¢ is compactly supported in the ball D = {|z| < 2}. Hence, I7 is
bounded by

¢
M zlls < c/ |(u x Vo) * 8xV x w||s + ||(u x VAP) x V x W' sdr
0

t
< [ lhux 900l 1V s, + 1 x VAGLs )| Ve
0

3.8 t
B9 <o [y +elhul g Tl g0

t

Sc/ rE(L4+ )i (b — )"y
0

< epmellmmtan i) 1> g,

for 2 < s < 0.
Now we consider the estimate of Is. Observe that

t
1slls < / [(wd;¢) * 9;V*|is + [[(uAg) x V*||sdr = P1 + P.
0
It is easy to see

P < /uwwvwmw</nwnww,n dr

Sctmax{l—~—+2s, 1+2 } t>2

(3.9)

for 2 < s < oo. For the estimate of P, we observe

lug' 23, /ars) = Iu- (UP)ll2s/(sra) = lu- (curl v — Ro)ll25/(s+4)
< clluflsy2licurt vz + ¢[|[Rolls[[ull3s/(s+6)

< C||u||s/2||01lf1 vz + C||u¢1/2||2||u||3s/(s+6)-
for 3 < s < 0o. Observe that

t
Hﬁ/ﬂwmmmmWWwW
0

t
1/2 1/2 1/2 1/2 _r
< jg {3 lleurlvil" + gt 2|52 |lullsLr ) } (E = T) "3 dr

3.10 ¢
0
LR ()R R - )

< ctmax{l—z%+-2—3s—+6,—§}, t> 2,

for 3 < s < o0.
We consider the inequalities (3.3)-(3.10);

(3.3) + (3.5) + - + (3.10) < st 3 5+ for ¢ > 2,
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when r < g, 2 < s < 0o. The above inequality holds for (3.4) when r < g, 2<
8 < 6. Therefore, we have
(3.11) IV x v|s < cst!toa— 318 ¢ >0
when r < g, 2 < s < 6. This completes the proof of Proposition 3.2.

Remark 3.5. As a matter of fact, we can derive the above inequality even for
t < 2. We omit the details, but we will use this fact in the next section:

[V X v|ls < est' 357348 ¢ >0,
Whenr<g, 2<s5<6.
3.4. Proof of Proposition 3.2 for p > 6
By Lemma 3.1 and (3.11), we obtain that for 3 < p < 6,
(3.12) ludll, < cst 4T3 (1+)5~ 5t fort > 0.

Now we derive decay rate estimate of ||V x v||, for p > 6.

Observe that the estimates for Is + Iy, Is, ..., Is in the proof of Proposition
3.2 do hold for any p > 2, and the estimate for the term I; 4 I3 holds only for
p < 6. Hence we have only to obtain the estimate for I + I3 for p > 6,

Making use of (3.12) and the temporal estimate (1.4), by Minkowski’s and
Holder’s inequalities, we have

I+ Il < / gl

N o

t
(3.13) ga;/ (L) ) g,
0
< eptmadE G-I+ E) s o

If we follow the same reasoning in the last part of the previous lemma, we
complete the proof.

References

[1] H.-O. Bae, Temporal decays in L' and L™ for the Stokes flow, J. Differential Equations
222 (2006), no. 1, 1-20.

2 , Temporal and spatial decays for the Stokes flow, submitted.

3] , Analyticity and asymptotics for the Stokes solutions in a weighted space, J.
Math. Anal. Appl. 269 (2002), no. 1, 149-171.

[4] H.-O. Bae and H. J. Choe, Decay rate for the incompressible flows in half spaces, Math.
Z. 238 (2001), no. 4, 799-816.

[5] H.-O. Bae and B. J. Jin, Upper and lower bounds of temporal and spatial decays for the
Navier-Stokes equations, J. Differential Equations 209 (2005), no. 2, 365-391.

(6] , Temporal and spatial decays for the Navier-Stokes equations, Proc. Roy. Soc.
Edinburgh Sect. A 135 (2005), no. 3, 461-477.

[7] W. Borchers and T. Miyakawa, Algebraic L? decay for Navier-Stokes flows in exterior
domains, Acta Math. 165 (1990}, no. 3-4, 189-227.




566

(8]

—
©
=

10}

[11)

f12]
(13]

(14]

(15]

[16]

(17]
(18]
(19]

[20]

21]

(22]

23]

[27]

(28]

29]

HYEONG-OHK BAE AND BUM JA JIN

, Algebraic L? decay for Navier-Stokes flows in exterior domains. II, Hiroshima
Math. J. 21 (1991), no. 3, 621-640.

L. Brandolese, Space-time decay of Navier-Stokes flows invariant under rotations, Math.
Ann. 329 (2004), no. 4, 685-706.

L. Caffarelli, J. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of
the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771-831.

R. Farwig and H. Sohr, Global estimates in weighted spaces of weak solutions of the
Navier-Stokes equations in exterior domains, Arch. Math. (Basel) 67 (1996), no. 4,
319-330.

, Weighted energy inequalities for the Navier-Stokes equations in exterior do-
mains, Appl. Anal. 58 (1995), no. 1-2, 157-173.

Y. Fujigaki and T. Miyakawa, Asymptotic profiles of monstationary incompressible
Navier-Stokes flows in the whole space, SIAM J. Math. Anal. 33 (2001), no. 3, 523-544.
G. P. Galdi and P. Maremonti, Monotonic decreasing and asymptotic behavior of the
kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains,
Arch. Rational Mech. Anal. 94 (1986), no. 3, 253-266.

C. He, Weighted estimates for nonstationary Navier-Stokes equations, J. Differential
Equations 148 (1998), no. 2, 422-444.

C. He and T. Miyakawa, On L!-summability and asymptotic profiles for smooth solu-
tions to Navier-Stokes equations in a 3D exterior domain, Math. Z. 245 (2003), no. 2,
387-417.

C. He and Z. Xin, Weighted estimates for nonstationary Navier-Stokes equations in
exterior domains, Methods Appl. Anal. 7 (2000), no. 3, 443-458.

, On the decay properties of solutions to the non-stationary Navier-Stokes equa-
tions in R3, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 3, 597-619.

E. Hopf, Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen,
Math. Nachr. 4 (1951), 213-231.

H. Iwashita, Lq-Ly, estimates for solutions of the nonstationary Stokes equations in an
exterior domain and the Navier-Stokes initial value problems in Ly spaces, Math. Ann.
285 (1989), no. 2, 265-288.

H. Kozono, Rapid time-decay and net force to the obstacles by the Stokes flow in exterior
domains, Math. Ann. 320 (2001), no. 4, 709-730.

H. Kozono, T. Ogawa, and H. Sohr, Asymptotic behaviour in L™ for weak solutions of
the Navier-Stokes equations in exterior domains, Manuscripta Math. 74 (1992), no. 3,
253-275.

O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second
English edition, revised and enlarged. Translated from the Russian by Richard A. Sil-
verman and John Chu. Mathematics and its Applications, Vol. 2 Gordon and Breach,
Science Publishers, New York-London-Paris 1969.

J. Leray, Sur le mouvement d’un liquide visqueuxr emplissant ’espace, Acta Math. 63
(1934), no. 1, 193-248.

T. Miyakawa, On space-time decay properties of nonstationary incompressible Navier-
Stokes flows in R™, Funkcial. Ekvac. 43 (2000), no. 3, 541-557.

, On nonstationary solutions of the Navier-Stokes equations in an exterior do-
main, Hiroshima Math. J. 12 (1982), no. 1, 115-140.

T. Miyakawa and M. E. Schonbek, On optimal decay rates for weak solutions to the
Navier-Stokes equations in R™, Proceedings of Partial Differential Equations and Ap-
plications (olomouc, 1999), Math. Bohem. 126 (2001}, no. 2, 443-455.

V. Scheffer, Partial regularity of solutions to the Navier-Stokes egquations, Pacific J.
Math. 66 (1976), no. 2, 535-552.

M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations,
Comm. Partial Differential Equations 11 (1986), no. 7, 733-763.




NAVIER-STOKES EQUATIONS 567

{30} G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations
near the boundary, J. Math. Fluid Mech. 4 (2002), no. 1, 1-29.

[31] S. Takahashi, A weighted equation approach to decay rate estimates for the Navier-
Stokes equations, Nonlinear Anal. 37 (1999), no. 6, Ser. A: Theory Methods, 751-789.

[32] M. Wiegner, Decay estimates for strong solutions of the Navier-Stokes equations in ex-
terior domains, Navier-Stokes equations and related nonlinear problems (Ferrara, 1999).
Ann. Univ. Ferrara Sez. VII (N.S.) 46 (2000), 61-79.

HYEONG-OHK BAE

DEPARTMENT OF NATURAL SCIENCES
Ajou UNIVERSITY

SUWON 443-749, KOREA

E-mail address: hobae@ajou.ac.kr

BuMm JA JiN

D1visION OF MATHEMATICS COLLEGE OF SCIENCE
MOKPO NATIONAL UNIVERSITY

MOKPO 534-729, KOREA

E-mail address: bumjajin@hanmail.net



