HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE. II.

IN SUNG HWANG AND JONGRAK LEE

ABSTRACT. In this paper we consider the hyponormality of Toeplitz operators T_{φ} on the Bergman space $L_a^2(\mathbb{D})$ with symbol in the case of function $f+\overline{g}$ with polynomials f and g. We present some necessary conditions for the hyponormality of T_{φ} under certain assumptions about the coefficients of φ .

1. Introduction

A bounded linear operator A on a Hilbert space is said to be hyponormal if its selfcommutator $[A^*,A]:=A^*A-AA^*$ is positive semidefinite. The purpose of this paper is to study hyponormality for Toeplitz operators acting on the Bergman space $L^2_a(\mathbb{D})$ of the unit disc \mathbb{D} . In particular, our interest is Toeplitz operators with polynomial symbols which satisfy certain constraints.

If P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2_a(\mathbb{D})$, the Toeplitz operator T_{φ} on $L^2_a(\mathbb{D})$ is defined by

$$T_{\varphi}f = P(\varphi \cdot f),$$

where φ is measurable and f is in $L_a^2(\mathbb{D})$. It is clear that those operators are bounded if φ is in $L^\infty(\mathbb{D})$. The Hankel operator $H_\varphi: L_a^2 \longrightarrow L_a^{2^{\perp}}$ is defined by $H_\varphi(f) = (I-P)(\varphi \cdot f)$. Let $H^2(\mathbb{T})$ denote the Hardy space of the unit circle $\mathbb{T} = \partial \mathbb{D}$. Recall that given $\psi \in L^\infty(\mathbb{T})$, the Toeplitz operator on $H^2(\mathbb{T})$ is the operator T_ψ on $H^2(\mathbb{T})$ defined by $T_\psi f = P_+(\psi \cdot f)$, where f is in $H^2(\mathbb{T})$ and P_+ denotes the orthogonal projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$.

Basic properties of the Bergman space and the Hardy space can be found in [1], [3] and [4]. The hyponormality of Toeplitz operators on the Hardy space has been studied by C. Cowen [2], T. Nakazi and K. Takahashi [8], W. Y. Lee [5], [6] and others. In [2], Cowen characterized the hyponormality of Toeplitz operator T_{φ} on $H^2(\mathbb{T})$ by properties of the symbol $\varphi \in L^{\infty}(\mathbb{T})$. The solution

Received February 10, 2007; Revised April 18, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B20, 47B35.

Key words and phrases. Toeplitz operators, hyponormal operators, Bergman space.

is based on a dilation theorem of Sarason [10]. It also exploited the fact that functions in $H^{2^{\perp}}$ are conjugates of functions in zH^2 . For the Bergman space, $L_a^{2^{\perp}}$ is much larger than the conjugates of functions in zL_a^2 , and no dilation theorem (similar to Sarason's theorem) is available. Indeed it is quite difficult to determine the hyponormality of T_{φ} on $L_a^2(\mathbb{D})$. In fact the study of hyponormal Toeplitz operators on the Bergman space seems to be scarce from the literature.

In this paper we study the hyponormality of Toeplitz operators T_{φ} on the Bergman space $L_a^2(\mathbb{D})$ with symbols in the case of function $\varphi = \overline{g} + f$ with polynomials f and g. Since the hyponormality of operators is translation invariant we may assume that f(0) = g(0) = 0. We shall list the well-known properties of Toeplitz operators T_{φ} on the Bergman space.

If f, g are in $L^{\infty}(\mathbb{D})$ then we can easily check that

(i)
$$T_{f+q} = T_f + T_q$$

(ii)
$$T_f^* = T_{\overline{f}}$$

(iii)
$$T_{\overline{f}}T_g = T_{\overline{f}g}$$
 if f or g is analytic.

These properties enable us to establish several consequences of hyponormality.

Proposition 1.1 ([7], [9]). Let f, g be bounded and analytic. Then the followings are equivalent.

- (i) $T_{\overline{g}+f}$ is hyponormal.
- (ii) $H_{\overline{q}}^* H_{\overline{g}} \leq H_{\overline{f}}^* H_{\overline{f}}$.
- (iii) $||(I-P)(\overline{g}k)|| \le ||(I-P)(\overline{f}k)||$ for any k in L_a^2 .

Very recently, in [7], it was shown that if $\varphi(z) = a_{-m}\overline{z}^m + a_{-N}\overline{z}^N + a_m z^m + a_N z^N$ (0 < m < N) and if $a_m \overline{a_N} = a_{-m} \overline{a_{-N}}$, then

 T_{φ} is hyponormal

$$\iff \begin{cases} \frac{1}{N+1}(|a_N|^2 - |a_{-N}|^2) \ge \frac{1}{m+1}(|a_{-m}|^2 - |a_m|^2) & \text{if } |a_{-N}| \le |a_N| \\ N^2(|a_{-N}|^2 - |a_N|^2) \le m^2(|a_m|^2 - |a_{-m}|^2) & \text{if } |a_N| \le |a_{-N}|. \end{cases}$$

In this paper we continue to examine the hyponormality of T_{φ} in the cases where φ is a trigonometric polynomial.

2. Main result

In this section we present some necessary conditions for hyponormality of T_{φ} . First of all, observe that for any s, t nonnegative integers,

$$P(\overline{z}^t z^s) = \begin{cases} \frac{s - t + 1}{s + 1} z^{s - t} & \text{if } s \ge t \\ 0 & \text{if } s < t. \end{cases}$$

For $0 \le i \le N-1$, write

$$k_i(z) := \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i}.$$

The following lemmas will be used for proving the main result of this section.

Lemma 2.1 ([7]). For $0 \le m \le N$, we have

(i)
$$||\overline{z}^m k_i(z)||^2 = \sum_{n=0}^{\infty} \frac{1}{Nn+i+m+1} |c_{Nn+i}|^2$$
.

(ii)
$$||P(\overline{z}^m k_i(z))||^2 = \begin{cases} \sum_{n=0}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^2} |c_{Nn+i}|^2 & \text{if } m \leq i \\ \sum_{n=1}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^2} |c_{Nn+i}|^2 & \text{if } m > i. \end{cases}$$

Lemma 2.2. Let $f(z) = a_m z^m + a_N z^N$, $g(z) = a_{-m} z^m + a_{-N} z^N$ (0 < m < N). If $T_{\overline{q}+f}$ is hyponormal, then

(i)
$$\frac{1}{N+1}(|a_N|^2 - |a_{-N}|^2) \ge \frac{1}{m+1}(|a_{-m}|^2 - |a_m|^2).$$

- (ii) $|a_m| < |a_{-m}| \text{ implies } |a_N| > |a_{-N}|$.
- (iii) $|a_N| < |a_{-N}| \text{ implies } |a_m| > |a_{-m}|$

Proof. Let $T_{f+\overline{g}}$ be a hyponormal operator. By proposition 1.1, we have $||f|| \ge ||g||$. Observe that

$$||f||^2 = \frac{1}{m+1}|a_m|^2 + \frac{1}{N+1}|a_N|^2$$
 and $||g||^2 = \frac{1}{m+1}|a_{-m}|^2 + \frac{1}{N+1}|a_{-N}|^2$

This proves the equation (i). The equation (ii) and (iii) are immediate from (i).

Our main result now follows:

Theorem 2.3. Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = a_m z^m + a_N z^N$$
 and $g(z) = a_{-m} z^m + a_{-N} z^N$ $(0 < m < N)$.

If T_{φ} is hyponormal and $|a_N| \leq |a_{-N}|$, then we have

(1)
$$N^2(|a_{-N}|^2 - |a_N|^2) \le m^2(|a_m|^2 - |a_{-m}|^2).$$

Proof. Put $k_i(z):=\sum_{n=0}^{\infty}c_{Nn+i}z^{Nn+i}$ for $i=0,1,2,\ldots,N-1$. Then we have $\left\langle k_i(z)\overline{z}^m,k_i(z)\overline{z}^N\right\rangle=0$.

Thus by Lemma 2.1, we have

(2)
$$\langle M_{\overline{f}}k_{i}(z), M_{\overline{f}}k_{i}(z) \rangle$$

$$= |a_{m}|^{2} \sum_{n=0}^{\infty} \frac{1}{Nn+m+i+1} |c_{Nn+i}|^{2} + |a_{N}|^{2} \sum_{n=0}^{\infty} \frac{1}{Nn+N+i+1} |c_{Nn+i}|^{2},$$

and

(3)
$$\langle M_{\overline{g}}k_{i}(z), M_{\overline{g}}k_{i}(z) \rangle$$

$$= |a_{-m}|^{2} \sum_{n=0}^{\infty} \frac{1}{Nn+m+i+1} |c_{Nn+i}|^{2} + |a_{-N}|^{2} \sum_{n=0}^{\infty} \frac{1}{Nn+N+i+1} |c_{Nn+i}|^{2}.$$

If $i \geq m$, it follows from Lemma 2.1 that

$$\langle T_{\overline{f}}k_{i}(z), T_{\overline{f}}k_{i}(z) \rangle$$

$$= |a_{m}|^{2} \sum_{n=0}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^{2}} |c_{Nn+i}|^{2} + |a_{N}|^{2} \sum_{n=1}^{\infty} \frac{Nn+i-N+1}{(Nn+i+1)^{2}} |c_{Nn+i}|^{2},$$

and

(5)
$$\langle T_{\overline{g}}k_{i}(z), T_{\overline{g}}k_{i}(z) \rangle$$

$$= |a_{-m}|^{2} \sum_{n=0}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^{2}} |c_{Nn+i}|^{2} + |a_{-N}|^{2} \sum_{n=1}^{\infty} \frac{Nn+i-N+1}{(Nn+i+1)^{2}} |c_{Nn+i}|^{2}$$

Combining (2) and (4), we see that

$$\begin{split} & \left\langle H_{\overline{f}}^* H_{\overline{f}} k_i(z), k_i(z) \right\rangle \\ &= |a_m|^2 \sum_{n=0}^{\infty} \left(\frac{1}{Nn+m+i+1} - \frac{Nn+i-m+1}{(Nn+i+1)^2} \right) |c_{Nn+i}|^2 \\ &+ |a_N|^2 \left(\frac{1}{N+i+1} |c_i|^2 + \sum_{n=1}^{\infty} \left(\frac{1}{Nn+N+i+1} - \frac{Nn+i-N+1}{(Nn+i+1)^2} \right) |c_{Nn+i}|^2 \right) \end{split}$$

Combining (3) and (5), we see that

$$\begin{split} & \left\langle H_{\overline{g}}^* H_{\overline{g}} k_i(z), k_i(z) \right\rangle \\ &= |a_{-m}|^2 \sum_{n=0}^{\infty} \left(\frac{1}{Nn+m+i+1} - \frac{Nn+i-m+1}{(Nn+i+1)^2} \right) |c_{Nn+i}|^2 \\ &+ |a_{-N}|^2 \left(\frac{1}{N+i+1} |c_i|^2 + \sum_{n=1}^{\infty} \left(\frac{1}{Nn+N+i+1} - \frac{Nn+i-N+1}{(Nn+i+1)^2} \right) |c_{Nn+i}|^2 \right) \end{split}$$

Therefore applying Proposition 1.1 gives that if T_{φ} is hyponormal then

$$\left\langle (H_{\overline{f}}^*H_{\overline{f}} - H_{\overline{g}}^*H_{\overline{g}})k_i(z), k_i(z) \right\rangle$$

$$= (|a_m|^2 - |a_{-m}|^2) \sum_{n=0}^{\infty} \left(\frac{1}{Nn+m+i+1} - \frac{Nn+i-m+1}{(Nn+i+1)^2} \right) |c_{Nn+i}|^2$$

(6)
$$+ (|a_N|^2 - |a_{-N}|^2) \left(\frac{1}{N+i+1} |c_i|^2 + \sum_{n=1}^{\infty} \left(\frac{1}{Nn+N+i+1} - \frac{Nn+i-N+1}{(Nn+i+1)^2} \right) |c_{Nn+i}|^2 \right)$$

 ≥ 0 .

If $|a_N| \leq |a_{-N}|$, it follows from Lemma 2.2 that $|a_m| > |a_{-m}|$. Define ξ by

$$\xi(n) := \frac{\frac{1}{Nn+m+i+1} - \frac{Nn+i-m+1}{(Nn+i+1)^2}}{\frac{1}{Nn+N+i+1} - \frac{Nn+i-N+1}{(Nn+i+1)^2}} \qquad (n \ge 1).$$

Then ξ is a strictly decreasing function and

$$\lim_{n\to\infty}\xi(n)=\frac{m^2}{N^2}$$

Since $\xi(n) \geq \frac{m^2}{N^2}$, it follows from (6) that T_{φ} is hyponormal, then we have

$$N^{2}(|a_{-N}|^{2}-|a_{N}|^{2}) \leq m^{2}(|a_{m}|^{2}-|a_{-m}|^{2})$$

This completes the proof.

The following example shows that the converse of Theorem 3.2 is not true.

Example. Consider the trigonometric polynomial

$$\varphi(z) = 2\overline{z}^2 + 2\overline{z} - 4z + z^2$$

Then φ satisfies the inequality (1). But a straightforward calculation shows that

$$\left\langle (H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}})(1+2z), (1+2z) \right\rangle = 9\frac{1}{3} - 14 < 0.$$

Therefore T_{φ} is not hyponormal.

References

- S. Axler, Bergman spaces and their operators, Surveys of some recent results in operator theory, Vol. I, 1-50, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988.
- [2] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809-812.
- [3] R. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49. Academic Press, New York-London, 1972.
- [4] P. Duren, Theory of H^p spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.

- [5] I. S. Hwang, I. H. Kim, and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313 (1999), no. 2, 247–261.
- [6] I. S. Hwang and W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2461–2474.
- [7] I. S. Hwang, Hyponormal Toeplitz operators on the Bergman space, J. Korean Math. Soc. 42 (2005), no. 2, 387-403.
- [8] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753-767.
- [9] H. Sadraoui, Hyponormality of Toeplitz operators and Composition operators, Thesis, Purdue University, 1992.
- [10] D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967), 179-203.

IN SUNG HWANG DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY Suwon 440-746, Korea $E ext{-}mail\ address: ihwang@skku.edu}$

JONGRAK LEE DEPARTMENT OF MATHEMATICS SUNGKYUNKWAN UNIVERSITY Suwon 440-746, Korea

E-mail address: jjonglak@skku.ac.kr