COMPOSITION OPERATORS BETWEEN HARDY AND BLOCH-TYPE SPACES OF THE UPPER HALF-PLANE

S. D. SHARMA, AJAY K. SHARMA, AND SHABIR AHMED

ABSTRACT. In this paper, we study composition operators $C_{\varphi}f = f \circ \varphi$, induced by a fixed analytic self-map of the of the upper half-plane, acting between Hardy and Bloch-type spaces of the upper half-plane.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} and φ be a holomorphic self-map of \mathbb{D} . Then the equation $C_{\varphi}f = f \circ \varphi$, for f analytic in \mathbb{D} defines a composition operator C_{φ} with inducing map φ . During the past few decades, composition operators have been studied extensively on spaces of functions analytic on the open unit disk \mathbb{D} . As a consquence of the Littlewood Subordination principle [3] it is known that every analytic self-map φ of the open unit disk \mathbb{D} induces a bounded composition operator on Hardy and weighted Bergman spaces of the open unit disk \mathbb{D} . However, if we move to Hardy and weighted Bergman spaces of the upper half-plane

$$\pi^+ = \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \},$$

the situation is entirely different. There do exist analytic self-maps of the upper half-plane, which do not induce composition operators on the Hardy spaces and weighted Bergman spaces of the upper half-plane (see [4], [10] and [12]. Interesting work on composition operators on Hardy spaces of the upper half-plane have been done by Singh [11], Singh and Sharma [12], [13], Sharma [9] and Matache [4] and [5]. Recently, several authors have studied composition operators and weighted composition operators on Bloch-type spaces of functions analytic in the open unit disk \mathbb{D} . For example, one can refer to [6] and [7] and the references therein for the study of these operators on Bloch-type spaces. However, composition operators on the Bloch-type spaces of the upper half-plane remain untouched so far. The main theme of this paper is to study composition operators between Hardy and Bloch type spaces of the upper half-plane. The plan of the rest of the paper is as follows. In the next section

Received November 1, 2006; Revised June 8, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B33, 46E10; Secondary 30D55. Key words and phrases. composition operator, Bloch-type spaces, Hardy spaces.

we introduce Hardy and Bloch-type spaces of the upper half-plane. Section 3 is devoted to characterize boundedness of composition operators on the Bloch space of the upper half-plane whereas boundedness of composition operators on Gowth spaces is tackled in section 4. Sections 5 and 6 deals with the boundedness of composition operators between Hardy and Bloch-type spaces of the upper half-plane.

2. Preliminaries

In this section we review the basic concepts and collect some essential facts that will be needed throughout the paper.

2.1. Hardy spaces of the upper half-plane.

For $1 \le p < \infty$, the Hardy space of the upper half-plane is defined as

$$H^p(\pi^+) = \{f: \pi^+ \to \mathbb{C} | f \text{ is analytic and } ||f||_p^p = \sup_{y>0} \int_{-\infty}^{\infty} |f(x+iy)|^p dx < \infty \}.$$

With this norm $H^p(\pi^+)$ becomes a Banach space and for p=2, it is a Hilbert space. To know more about these spaces, we refer to [1] and [2].

The growth of functions in the Hardy space is essential in our study. To this end the following estimate will be useful. For $f \in H^p(\pi^+)$, we have

$$(2.1) |f(x+iy)|^p \le \frac{||f||_p^p}{2\pi u}.$$

2.2. Bloch space of the upper half-plane.

The Bloch space of the upper half-plane π^+ , denoted by $\mathcal{B}_{\infty}(\pi^+)$, is defined to be the space of analytic functions f on π^+ such that

$$||f||_{\mathcal{B}_{\infty}} = \sup_{z \in \pi^+} \{\operatorname{Im} z |f'(z)|\} < \infty.$$

It is easy to check that $||f||_{\mathcal{B}_{\infty}}$ is a complete semi-norm on $\mathcal{B}_{\infty}(\pi^+)$.

2.3. Growth space of the upper half-plane.

The Growth space of the upper half-plane π^+ , denoted by $\mathcal{A}_{\infty}(\pi^+)$, is defined to be the space of analytic functions f on π^+ such that

$$||f||_{\mathcal{A}_{\infty}} = \sup_{z \in \pi^+} \{\operatorname{Im} z |f(z)|\} < \infty.$$

It is easy to check that $\mathcal{A}_{\infty}(\pi^+)$ is a (non separable) Banach space with the norm defined above.

In [4], Matache proved that a linear fractional map

(3.1)
$$\varphi(z) = \frac{az+b}{cz+d}, \ a,b,c,d \in \mathbb{R} \text{ and } ad-bc > 0,$$

induces a bounded composition operator on Hardy spaces $H^p(\pi^+)$ of the upper half plane if and only if c=0. However, by a simple application of the Schwarz-Pick Theorem in the upper half-plane, we can show that every holomorphic map φ of π^+ such that $\varphi(\pi^+) \subset \pi^+$ induces a bounded composition operator on the Bloch space $\mathcal{B}_{\infty}(\pi^+)$. Let us first state the Schwarz-Pick Theorem in the upper half-plane.

Schwarz-Pick Theorem in the upper half-plane. Let φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then for all $z_1, z_2 \in \pi^+$,

$$\left|\frac{\varphi(z_1)-\varphi(z_2)}{\varphi(z_1)-\varphi(z_2)}\right| \leq \left|\frac{z_1-z_2}{\overline{z_1}-z_2}\right|.$$

Also for all $z \in \pi^+$,

$$\frac{|\varphi'(z)|}{\operatorname{Im}\varphi(z)} \le \frac{1}{\operatorname{Im}z}.$$

Moreover, if equality holds in one of the two inequalities above, then φ must be a Mobius transformation with real coefficients. That is, if equality holds, then φ is given by (3.1).

Theorem 3.1. For any holomorphic map φ of π^+ such that $\varphi(\pi^+) \subset \pi^+$, the composition operator $C_{\varphi}: \mathcal{B}_{\infty}(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ is bounded.

Proof. For arbitrary $z \in \pi^+$ and $f \in \mathcal{B}_{\infty}(\pi^+)$

$$\operatorname{Im} z | (C_{\varphi} f)'(z) | = \operatorname{Im} z | f'(\varphi(z)) | | \varphi'(z) |$$

$$\leq \frac{\operatorname{Im} z}{\operatorname{Im} \varphi(z)} | \varphi'(z) | | | f | |_{\mathcal{B}_{\infty}},$$

and, consequently, by a simple application of the Schwarz-Pick Theorem on the upper half-plane,

$$\sup_{z \in \pi^+} \frac{\operatorname{Im} z}{\operatorname{Im} \varphi(z)} |\varphi'(z)| < 1,$$

we have $C_{\varphi}f \in \mathcal{B}_{\infty}(\pi^+)$. Hence by an analogue of the Closed Graph Theorem C_{φ} is bounded.

4. Composition operators on $\mathcal{A}_{\infty}(\pi^+)$

Theorem 4.1. Let φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then $C_{\varphi}: \mathcal{A}_{\infty}(\pi^+) \to \mathcal{A}_{\infty}(\pi^+)$ is bounded if and only if

$$\sup_{z \in \pi^+} \frac{\operatorname{Im} z}{\operatorname{Im} \varphi(z)} < \infty.$$

Proof. First suppose that (4.1) holds. Then boundedness of C_{φ} on $\mathcal{A}_{\infty}(\pi^{+})$ can be proved on similar lines as in the proof of Theorem 3.1.

Conversely, suppose C_{φ} is bounded. Fix a point $z_0 \in \pi^+$ and let $w = \varphi(z_0)$. Consider the function $f_w(z) = 1/(z - \overline{w})$. Then $f \in \mathcal{A}_{\infty}(\pi^+)$ and $||f_w||_{\mathcal{A}_{\infty}} \leq 1$. Boundedness of $C_{\varphi} : \mathcal{A}_{\infty}(\pi^+) \to \mathcal{A}_{\infty}(\pi^+)$ implies that there is a positive constant C such that, for each $z \in \pi^+$ we have $\operatorname{Im} z |f_w(\varphi(z))| \leq C$. In particular take $z = z_0$, we get

$$\frac{\operatorname{Im} z_0}{\operatorname{Im} \varphi(z_0)} \le 2C.$$

Since $z_0 \in \pi$ is arbitrary, the result follows.

Note. If $c = a + ib \in \pi^+$ and $\varphi(z) = c$ for all $z \in \pi^+$, then φ does not induce a bounded composition operator on $\mathcal{A}_{\infty}(\pi^+)$.

Corollary 4.2. Let $\varphi(z) = \frac{az+b}{cz+d}$, $a,b,c,d \in \mathbb{R}$ and ad-bc > 0. Then necessary and sufficient condition that C_{φ} is bounded on $\mathcal{A}_{\infty}(\pi^+)$ is that c = 0.

Proof. First suppose that C_{φ} is bounded. Then for $z = x + iy \in \pi^+$,

$$\sup_{z\in\pi^+}\frac{\operatorname{Im} z}{\operatorname{Im} \varphi(z)}=\sup_{z\in\pi^+}\frac{(cx+d)^2+c^2y^2}{(ad-bc)},$$

which is finite only if c = 0. Conversely, if c = 0, then $\varphi(z) = (a/d)z + (b/d)$, where ad > 0 and so

$$\sup_{z\in\pi^+}\frac{\operatorname{Im}z}{\operatorname{Im}\varphi(z)}=\frac{d}{a}<\infty.$$

Thus C_{φ} is bounded on $\mathcal{A}_{\infty}(\pi^+)$.

5. Composition operators from $H^p(\pi^+)$ into $\mathcal{A}_{\infty}(\pi^+)$

Theorem 5.1. Let $1 \leq p < \infty$ and φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then $C_{\varphi} : H^p(\pi^+) \to \mathcal{A}_{\infty}(\pi^+)$ is bounded if and only if

$$\sup_{z \in \pi^+} \frac{\operatorname{Im} z}{(\operatorname{Im} \varphi(z))^{1/p}} < \infty.$$

Proof. First suppose that

$$M = \sup_{z \in \pi^+} \frac{\operatorname{Im} z}{(\operatorname{Im} \varphi(z))^{1/p}} < \infty.$$

By (2.1), $|f(z)|^p \le ||f||_p^p/2\pi y$, for all $z = x + iy \in \pi^+$ and $f \in H^p(\pi^+)$. Thus, for $f \in H^p(\pi^+)$

$$\begin{split} ||C_{\varphi}f||_{\mathcal{A}_{\infty}} &= \sup_{z \in \pi^{+}} \operatorname{Im} z |C_{\varphi}f(z)| \\ &\leq \sup_{z \in \pi^{+}} \operatorname{Im} z / (2\pi \operatorname{Im} \varphi(z))^{1/p} ||f||_{p} \\ &= (M/(2\pi)^{1/p}) ||f||_{p}. \end{split}$$

Hence $C_{\varphi}: H^p(\pi^+) \to \mathcal{A}_{\infty}(\pi^+)$ is bounded. Conversely, suppose that $C_{\varphi}: H^p(\pi^+) \to \mathcal{A}_{\infty}(\pi^+)$ is bounded. Fix a point $z_0 \in \pi^+$ and let $w = \varphi(z_0)$. Consider the function

$$f_w(z) = \frac{(\operatorname{Im} w)^{2-1/p}}{\pi^{1/p}(z - \overline{w})^2}.$$

Then

$$||f_w||_p^p = \sup_{y>0} \int_{-\infty}^{\infty} |f_w(x+iy)|^p dx$$
$$= \frac{(\operatorname{Im} w)^{2p-1}}{\pi} \sup_{y>0} \int_{-\infty}^{\infty} \frac{1}{|z-\overline{w}|^{2p}} dx.$$

Writing w = u + iv and z = x + iy, we get

$$|z - \overline{w}|^{2p} \ge (v + y)^{2p-2}((x - u)^2 + (y + v)^2)$$

and so

$$||f_w||_p^p \leq \frac{v^{2p-1}}{\pi} \sup_{y>0} \frac{1}{(y+v)^{2p-1}} \int_{-\infty}^{\infty} \frac{y+v}{(x-u)^2 + (y+v)^2} dx$$

$$= \frac{v^{2p-1}}{\pi} \sup_{y>0} \frac{1}{(y+v)^{2p-1}} \pi$$

$$= 1$$

Boundedness of $C_{\varphi}: H^p(\pi^+) \to \mathcal{A}_{\infty}(\pi^+)$ implies that there is a positive constant C such that, for each $z \in \pi^+$ we have $\operatorname{Im} z |f_w(\varphi(z))| \leq C$. In particular take $z = z_0$, we get

$$\frac{\operatorname{Im} z_0}{(\operatorname{Im} \varphi(z_0))^{1/p}} \le 4\pi^{1/p} C.$$

Since $z_0 \in \pi^+$ is arbitrary, the result follows.

Corollary 5.2. Let $\varphi(z) = \frac{az+b}{cz+d}$, $a,b,c,d \in \mathbb{R}$ and ad-bc > 0. Then $C_{\varphi} : H^p(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ is bounded if and only if c = 0 and p = 1.

Proof. First suppose that C_{φ} is bounded. Then for $z = x + iy \in \pi^+$,

$$\sup_{z \in \pi^+} \frac{\operatorname{Im} z}{(\operatorname{Im} \varphi(z))^{1/p}} = \sup_{z \in \pi^+} \frac{(cx+d)^2 + c^2 y^2)^{1/p} y}{(ad - bc)^{1/p} y^{1/p}},$$

which is finite only if c = 0 and p = 1. Conversely, if c = 0 and p = 1, then

$$\sup_{z\in\pi^+}\frac{\operatorname{Im}z}{\operatorname{Im}\varphi(z)}=\frac{d}{a}<\infty.$$

Hence $C_{\varphi}: H^p(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ is bounded.

We next characterize boundedness of composition operators from $H^p(\pi^+)$ into $\mathcal{B}_{\infty}(\pi^+)$.

6. Composition operators from $H^p(\pi^+)$ into $\mathcal{B}_{\infty}(\pi^+)$

Theorem 6.1. Let $1 \leq p < \infty$ and φ be a holomorphic map of π^+ such that $\varphi(\pi^+) \subset \pi^+$. Then $C_{\varphi}: H^p(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ is bounded if and only if

(6.1)
$$\sup_{z \in \pi^+} \frac{\operatorname{Im} z}{(\operatorname{Im} \varphi(z))^{(p+1)/p}} |\varphi'(z)| < \infty.$$

Proof. First suppose that (6.1) holds. Let $f \in H^p(\pi^+)$. Then by Cauchy integral formula in π^+ [1], we have

$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{(t-z)} dt, \ z = x + iy \in \pi^+.$$

Thus

$$|f'(z)| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|f(t)|}{|t-z|^2} dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|f(t)|}{(t-x)^2 + y^2} dt.$$

Since

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{((t-x)^2 + y^2)} dt = 1,$$

 x^p is convex, we have by Jensen's inequality [8], p 62.

$$|f'(z)|^{p} \leq \int_{-\infty}^{\infty} \frac{|f(t)|^{p}}{2^{p}y^{p}} \frac{y}{((t-x)^{2}+y^{2})} dt$$

$$= \frac{1}{2^{p}y^{p-1}} \int_{-\infty}^{\infty} \frac{|f(t)|^{p}}{((t-x)^{2}+y^{2})} dt$$

$$\leq \frac{1}{2^{p}y^{p+1}} \int_{-\infty}^{\infty} |f(t)|^{p} dt.$$

Thus

$$|f'(z)|^p \le \frac{||f||_p^p}{2^p u^{p+1}}.$$

Thus, for $f \in H^p(\pi^+)$

$$||C_{\varphi}f||_{\mathcal{B}_{\infty}} = \sup_{z \in \pi^{+}} \operatorname{Im} z |(C_{\varphi}f)'(z)|$$

$$\leq \sup_{z \in \pi^{+}} \operatorname{Im} z / (2^{p} \operatorname{Im} \varphi(z))^{(p+1)/p} |\varphi'(z)| ||f||_{p}$$

$$= M||f||_{p}.$$

Hence $C_{\varphi}: H^p(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ is bounded. Conversely, suppose that $C_{\varphi}: H^p(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ is bounded. Fix a point $z_0 \in \pi^+$ and let $w = \varphi(z_0)$. Consider the function

$$f_w(z) = rac{({
m Im}\,w)^{2-1/p}}{\pi^{1/p}(z-\overline{w})^2}$$

Then

$$f_w'(z) = rac{(\operatorname{Im} w)^{2-1/p}}{\pi^{1/p}(z - \overline{w})^3}.$$

As in Theorem 5.1, we have $||f_w||_p^p \leq 1$. Boundedness of $C_{\varphi}: H^p(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ implies that there is a positive constant C such that $||C_{\varphi}f||_{\mathcal{B}_{\infty}} \leq C||f_w||_p \leq C$. Hence, for each $z \in \pi^+$

$$\operatorname{Im} z |f'_{w}(\varphi(z))\varphi'(z)| \leq C.$$

In particular, putting $z = z_0$, we get

$$\frac{\operatorname{Im} z_0 |\varphi'(z_0)|}{(\operatorname{Im} \varphi(z_0))^{(p+1)/p}} < 4\pi^{1/p} C.$$

Since $z_0 \in \pi^+$ is arbitrary, the result follows.

Corollary 6.2. Let $\varphi(z)$ be a holomorphic self-map of π^+ given by (3.2). Then $C_{\varphi}: H^p(\pi^+) \to \mathcal{B}_{\infty}(\pi^+)$ is not bounded.

Acknowledgements. We are extremely thankful to the referee for going through the manuscript and pointing out several typographical and mathematical errors.

References

- P. L. Duren, Theory of H^p spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.
- [2] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.
- [3] J. E. Littlewood, On inequalities in the theory of functions, Proc. Lond. Math. Soc. (2) 23 (1925), 481-519.
- [4] V. Matache, Composition operators on H^p of the upper half-plane, An. Univ. Timişoara Ser. Ştiinţ. Mat. 27 (1989), no. 1, 63-66.
- [5] _____, Composition operators on Hardy spaces of a half-plane, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1483-1491.
- [6] S. Ohno and R. Zhao, Weighted composition operators on the Bloch space, Bull. Austral. Math. Soc. 63 (2001), no. 2, 177–185.
- [7] S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191–215.
- [8] W. Rudin, Real and complex analysis, Third edition. McGraw-Hill Book Co., New York, 1987.
- [9] S. D. Sharma, Compact and Hilbert-Schmidt composition operators on Hardy spaces of the upper half-plane, Acta Sci. Math. (Szeged) 46 (1983), no. 1-4, 197-202.
- [10] S. D. Sharma, A. K. Sharma, and S. Ahmed, Carleson measures in a vector-valued Bergman space, J. Anal. Appl. 4 (2006), no. 1, 65-76.
- [11] R. K. Singh, A relation between composition operators on H²(D) and H²(P⁺), Pure Appl. Math. Sci. 1 (1974/75), no. 2, 1-5.
- [12] R. K. Singh and S. D. Sharma, Composition operators on a functional Hilbert space, Bull. Austral. Math. Soc. 20 (1979), no. 3, 377-384.
- [13] _____, Noncompact composition operators, Bull. Austral. Math. Soc. 21 (1980), no. 1, 125-130.

S. D. SHARMA

DEPARTMENT OF MATHEMATICS UNIVERSITY OF JAMMU

JAMMU-180006, INDIA

E-mail address: somdatt_jammu@yahoo.co.in

AJAY K. SHARMA
SCHOOL OF APPLIED PHYSICS AND MATHEMATICS
SHRI MATA VASHINO DEVI UNIVERSITY
P/O KAKRYAL, UDHAMPUR-182121, INDIA
E-mail address: aksju_76@yahoo.com

SHABIR AHMED
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF JAMMU
JAMMU-180006, INDIA