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THE ZEROS OF CERTAIN FAMILY OF SELF-RECIPROCAL
POLYNOMIALS

SEoN-HonGg KiMm

ABSTRACT. For integral self-reciprocal polynomials P(z) and Q(z) with
all zeros lying on the unit circle, does there exist integral self-reciprocal
polynomial G (z) depending on r such that for any r, 0 < r < 1, all zeros
of Gr(2) lie on the unit circle and Go(z) = P(z), G1(2) = Q(2)? We
study this question by providing examples. An example answers some
interesting questions. Another example relates to the study of convex
combination of two polynomials. From this example, we deduce the study
of the sum of certain two products of finite geometric series.

1. Introduction and examples

Throughout this paper, U denotes the unit circle and n is a positive integer.
A polynomial

(1.1 P(2) =2+ a4 12" T+ +ag

of degree n is said to be a self-reciprocal polynomial of degree n if it satisfies
P(z) = z"P(1/z), or equivalently, a; = an—; for 0 < j < n. In what follows, let
P(z) be a real self-reciprocal polynomial of the form (1.1). By Cohn’s theorem
[1], a polynomial Q(z) of degree n with all its zeros on U must be of the form
Q(z) = pz"Q(1/2) for some y, |u| = 1. Hence it is interesting to mention the
condition for P(z) with all zeros on U.

Cohn (see [1] or p.206 of [5]) proved that all zeros of P(z) lie on U if and
only if all zeros of its derivative lie on or inside U. Recently, by Lakatos [4], it
has been known that if ja,| > Zz;ll |ax — ay|, all zeros of P(z) lie on U. Using
Lakatos’s theorem [4], we can easily see that, for ¢ real and

n—1
It > lanl + Y lax — anl,
k=1

Received July 27, 2006.

2000 Mathematics Subject Classification. Primary 30C15; Secondary 26C10.

Key words and phrases. self-reciprocal polynomials, convex combination, zeros, unit
circle.

This work was supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD) (KRF-2005-041-C00016).

(©2007 The Korean Mathematical Society
461



462 SEON-HONG KIM

we have that
(1.2) P(z)—l—t(z”—}—z”_1 +---41)

has all its zeros on U since |a, +t| > |t| — |an|. The second term (with deleting
t) of (1.2) is also self-reciprocal and has all its zeros on U. This suggests to
study polynomials having a form something like sP(z) + tQ(z) where P(z)
and Q(z) are integral self-reciprocal polynomials with same degree having all
their zeros on U. As a special case, one may ask whether all zeros of convex
combination of P(z) and Q(z) are on U. The answer is negative. For example,
let
Pz)=(Z -2+ 1)+ 1)+ 22+ 2+ 22 + 22 + 2 + 1),
Q)= -2+ -2+ 1) -2+ 22— 22 4+ 1).
Each of P(z) and Q(2) has all its zeros on U, but (P(z) + Q(z))/2 has zeros
0.86603 - -+ i0.77115- - - of modulus 1.15963---. Thus rP(z) + (1 — r)Q(z)
(0 < r < 1) “fails” in a sense: it does not keep all zeros on U. Hence, it is
natural to ask a generalized question: for integral self-reciprocal polynomials
P(z), Q(z) with all zeros lying on U, does there exist integral self-reciprocal
polynomial G,(z) depending on r such that for any 7, 0 < r < 1, all zeros
of G(z) lie on U and Go(z) = P(z), Gi(z) = Q(2)? For convenience, if this
question is true, we write
P~Q,
and
P—Q
if Gr(z) = (1 —m)P(2) + rQ(z). In case of P < @, it seems to be difficult to
find a suitable G, (z). In Section 2, we get G, (z) for the case
P(z)= (2" +1)*, Q(z)=(:"-1(=""?-1),
where P <& Q. It is of interest that this G,(z) solves the following question. If
B 1 =P 42+ D -2+ D)z 4+ 1Dz =12 =0,

then |z =1and (24 +1)2 = (22 +2)%,s0 |24 + 1| = |23 +2z]. For O < r < 1, it
is not clear that
|2* + 1) = |(r2)® + rz]
has a solution on U. The G,(z) in our example will give an answer of this
question for general case
|22 + 1] = [(rz)** ! + 1z

in Section 2.
We now turn to the case P «— Q. In Section 3, using Fell’s lemma [2], we
will show that

2% —12° -1 27 —12"7-1

z—1 z-1 z—1 z—-1

(1.3)
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provided
(@, B;7,m) = (n,n+3in+1,n+2)
In fact, it seems that (1.3) is true for all o, §,7,n with a + 8 = v+ 7. But we
have not resolved this question. However, for o + 3 = v + 7, we will prove in
Section 3 that the sum of two products of finite geometric series
22—128 -1 27—-12"7-1

z—-1 z—-1 z—1 z—1

has all its zeros on U. In general, if we define, for positive integers oy and O,
1<k <n, with Y3 o = 35 Br,

n n

z%% —1 28 -1
Bt ni By i) o= | ot + [ 2t

z z
k=1 k=1

then &,, is an integral monic self-reciprocal polynomial in 2 of degree 3 7_; ap—
n, and each summand of @, obviously has all its zeros on U. The zeros of ®;
clearly lie on U. All zeros of ®; lying on U will be proved in Section 3. However,
for n = 3,4, we may find some ajs and f}s with >}, ax = > ,_; Gk such
that not all zeros of ®,, lie on U. For example, the polynomial equation

- -D)EE -+ -DE-1DEM-1)=0

has four nonreal zeros with modulus # 1. Hence, for n > 3, it seems that, for
some a}s and B;s with 3°7' | o = Y1, Bx, not all zeros of &, lie on U.

2. The case P ~ Q but P % Q
Using Cohn’s theorem (see [1] or p.206 of [5]) we have
Theorem 1. Let 0 < r < 1. Then we have
(" +1)” ~ (2 - (2 - 1),
where
Gr(z) = 2" —p#npin=2 _ (P72 4 p2 2 2)2%" —p2np? 41,

Proof. Note that Go(z) = (22" +1)? and G1(2) = (22 ~1)(2%"~2 —1). Suppose
0 < r < 1. Then we have
G;iz) =2nz*""2 — (2n — ez fn(2 - P2 — pin=2),2n=2 _ p2n

Let
f(z) = 2n2*""2,

g{z) =—(2n — 1),,_2nz4n—4 +n(2-— r2_ T4n~2)z2n—2 g
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On |z| =1,
lg(2)| < (2n — 1)r®™ £ (2 — r? —pin=2) 4420
=n(2r?" 4+ 2 — r? — pin=2)
o (2 (= r”)z(r + r”)2>
r

<2n=|f(z)|.
Hence, by Rouché (see p.2 of [5]), G7.(z) has all its zeros inside U. It follows
from Cohn’s theorem that the proof is complete. O

Remark 2. We observe that
(2" +1) o (27— D)2~ 1),
In fact, for n =13, r = 1/5,
1= +1)2+r(z2 - 1)(""2-1)
has four zeros with modulus # 1.
28 =20 2241 =(22+2+1)(22 -2+ 1)(2+1)%(2—=1)2 = 0, then |z| = 1

and

(2’4 4 1)2 — (23 + Z)Z,
50

|2* + 1| = 2% + 2|

For 0 < r < 1, it is not clear that

|24+ 1] = |(r2)® + 72|

has a solution on U. The polynomial G,(z) in Theorem 1 gives the answer of
this.

Proposition 3. Let 0 <r < 1. A zero of
GT(Z) — Z4n - ,,,2nZ4n—2 _ (,r4n—2 + 7,2 _ 2)2271 . 7,271,22 41
satisfies
|27+ 1| = |(rz)?*~! +rz|.

Proof. We can compute that G.(z) = 0 is equivalent to

(ZQTL 4 1)2 — T222(22n_2 + r2n—2)((,’,z)2n—2 + 1)
Thus

|Z2n + 1|2 — T2|22”22n—2 + T2n—2||(7,z)2n—2 4 11
and we can compute that, for |z] =1,

|Z2n—2 + ,r2n—2| _ |(,,,Z)2n—2 + 11,

which implies that, for |z] = 1,

|Z2n+1|2=,r,2lz2”(,rz)2n—-2+1|2
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and
122" + 1) = |(r2)? ! +rz).

3. The case P — Q
Before studying the case P — @, we prove

Theorem 4. Let o, 8, vy, and n be positive integers with o+ 8 = v+1n. Then
the integral self-reciprocal polynomial

za—lzﬁ—1+z7—1z"—1

z—1 z-1 z—1 z-1

Q2(e, 8,57, m52) =
has all its zeros on U.

Proof. Let n, o and 7 be positive integers with n > 2 and o < v < |n/2].
Then it suffices to show that

U(z) :=(z-1)E""=-1)+E -1DE"7-1)
has all its zeros on U. Expanding ¥(z) in z derives that
U(z) =22" — 2" —2"77 — 27 — 2% + 2,
which is self-reciprocal. On the other hand, we can compute that
T'(2)
= 71 (22" — (R — @)2" 2% — (n — ) 2" T — VT a)
=21z —1) (l+z+ -+ 27 (b 7)27 A+ 24 - 4+ 2727
+(n+a)z2" TN L4z 4+ 27T+ (202" (L 2 -+ 297T).
Hence, by Enestrom-Kakeya theorem (see p.136 of [5]), ¥'(z) has all its zeros

lie inside or on U. The result follows from Cohn’s theorem [1]. O

Perhaps one can use Fell’s lemma [2] when we expect that P — Q though
proof by using this lemma seems to be very long and complicated. In this
section, we will see an example of using Fell’s lemma. Fell [2] gave necessary
and sufficient conditions for the zeros of (1 —r)P +7rQ 0 <7 <1 to all lie on
U provided the zeros of monic polynomials P and @) with the same degree all
lie on U.

Lemma 5. Let Py(z) and Pi(z) be real monic polynomials of degree n with
their zeros contained in U except for —1 and 1. Denote the zeros of Py(z) by
wi, W, ..., Wy and of P1(z) by z1,22,...,2,. Assume that

wi7ézj (1§Z,j§n)

and
0 < arg (w;) < arg (w;) < 2m,

0<arg(z) <arg(z) <2 (1<i<j<mn).
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Let o; be the smaller open arc of U bounded by w; and z;(i = 1,...,n). Then
the locus of zeros of (1 —7)Py(2) +rPi(z) (0 < r < 1) is contained in U if and
only if the arcs a; are disjoint.

In the rest of this section, for n positive integer, we again consider the
integral self-reciprocal polynomials
2%—12° -1 27 —12"7-1
=Ty 5=y ad QB =S5 7
We conjecture that P(z) < Q(z) for all o, 8,7v,n with a + 8 = v + n which is
a generalization of Theorem 4. We have not resolved this question. However
we show that the assertion is true for suitably chosen {«, §;7y,7) in terms of n.
In fact we have

Theorem 6. Let n be a positive integer. Then

2% —120 -1 27 —=12"7-1

s
z—1 z—-1 z—1 z—1

provided
(a,8;7,m) = (n,n+3n+1,n+2).

For the proof of this, we rely on Lemma 5. For convenience, we denote z:_‘l

by [o] for a positive integer c. Then the arguments of the zeros of [a] between
0 and 27 are 2kn/a, (1 < k < o —1). So, by removing the constant 27,
the zeros of o] can be identified with the ascending chain of rational numbers
1/a,2/a,...,(a—1)/c. When applying Lemma 5 in the proof, we can use an
ascending chain of rational numbers instead of angle arguments. In order to
show Theorem 6, one can consider the following three cases separately, namely

(a) for n > 2, (o, B;7,m) = (2n,2n + 2;2n — 2,2n + 4),

(b) for n > 1, (e, B;v,m) = (dn+ 1,4n + 3;4n — 1,4n + 5),

(c) for n >0, (o, B;7,m) = (dn+ 3,4n+ 5;4n + 1,4n + 7).

In Proposition 7 below, we give the zero distribution of each case whose
proof is complicated and straightforward. Theorem 6 is immediately obtained
from Lemma 5 and Proposition 7. In Proposition 7, we denote (c)* by k ¢'s.

Proposition 7. (a) Let n > 2 be an integer. If we indicate elements of
[2n][2n + 2] and [2n — 2][2n + 4] by a and b, respectively, then the ascend-
ing chain for the elements of both [2n](2n + 2] and [2n — 2][2n + 4] is of the
form

(baab)®™.

(b) Let n > 1 be an integer. If we indicate elements of [4n + 1][4n + 3] and
[An—1][4n+5] by a and b, respectively, then the ascending chain for the elements
of both [4n + 1][4n + 3] and [4n — 1][4n + 5] is of the form

(baab)™ (abba)*™ ! (baab)™.
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(c) Let n > 1 be an integer. If we indicate elements of [4n + 3][4n + 5] and
[An+1][dAn+7] by a and b, respectively, then the ascending chain for the elements
of both [4n + 3|[4n + 5] and [4n + 1][4n + 7] is of the form

(baab)™ (baba)(abba)"ab(baab)™ (baba)(abba)™ab.

Proof. (a) We recall that [a] = ‘”:__11. Let n be an integer > 2. We observe
that

[2n] or [2n + 4]
(3.1) _ J{z +1) - integral polynomial, n odd,
"~ |(z+1)(¢® +1) - integral polynomial, n even,
and
[2n + 2] or [2n — 2]
(3.2) _J(#+1)(«* + 1) - integral polynomial, n odd,
B (z + 1) - integral polynomial, n  even.

We first find the ascending chain for the zeros of both [2n] and [2n + 2]. By
(3.1) and (3.2), both [2nr][2n + 2] and [2n — 2]{2n + 4] have the common factor
(z +1)%(z% + 1). So we may assume that, for n even, the ascending chains for
the zeros of [2n] and [2n + 2] are

k n 3n
e =934 - <k<2 -4 Yad) o (°
a; {271 1<k<2n 1k%n2 2}

2n+ 2
respectively, and, for n odd,

a10={2£:1§k§2n—1,k7én},

age:{ k :1§k§2n+1,k7én+1},

n

k n+1 3n+3
= ——1<k<2 1,k 1, —
Q20 {2n+2 - <iZn+ ’ #n—i_ ) 9 ’ 2 }7

respectively. Also, we may assume that, for n even, the ascending chains for
the zeros of [2n — 2] and [2n + 4] are

k
= 1< k< — —
bie {2n_2 1<k<2n—-3,k#n 1},

k n+2 3n+6
b2e {2n+4 1<k<2n+3,k #£#n+2, 5 3 },

respectively, and, for n odd,

k n—1 3n—-3
= 1< < — — R
blo {2 9 1 k 2n 3,k7én 1, 9 2 },

k
bao {2n+4 1_/c_2n+3,k7én+2}



468 SEON-HONG KIM

Write a. = a1 U aze, @y = @10 U @90, be = b1 U bge and b, = b1, U bg,.
Regardless of whether n is even or odd, we have a. = a,, b = b,. So, if we
show that the elements of a. and b, form good pairs (for the definition of good
pair, see Definition 4.2 of [3]), then so do the elements of a, and b,. Hence
we only consider the case n even. Moreover, since the numbers after adding
the elements of a.,a,,b. and b, in (0,1/2) by 1/2 again belong to a., a,, be
and b, in (1/2,1), and the cardinality of ae,a,,b. and b, in (0,1/2) is even,
respectively, we only need to consider the elements of a. and b, in the interval
(0,1/2). Clearly the ascending chain for the zeros of both [2n] and [2n + 2]
begins with 1/(2n + 2). Since 2 is the only common divisor of 2n and 2n + 2,
we have a1, Nag. = 0. Note that k < nif and only if (k+1)/(2n+2) > k/(2n).
So the ascending chain for a. in (0,1/2) is the following;

1 1 2 2 n/2
Mm+2 20" 2m+2 20" 2n+2
n/2+1 n/2+1 n—-1 n
n+2" 2n 77777 2n 20427

In (3.3), the only consecutive numbers except for {(n/2)/(2n + 2),(n/2 +
1)/(2n + 2)} are of the form either

(3.3)

kok
. _— — <k <n—
(3.4) s 2 (LSk<n—1k#n/2)
or

ko k+1
. _— — <k<n-— .
(3:5) 2n’ 2n + 2 (Isksn-—1,k#n/2)

Now we check the existence of elements of b, between two numbers in (3.4)
and (3.5). Let &k be an integer with 1 < k <n —1, k # n/2. First, we consider
(3.4). If

k z k
< < —
2n+2 " 2n—-2 " 2n
for some integer z with 1 < ¢ < 2n — 3, z # n — 1, then (3.6) implies that
k—-@2k)/(n+1)<z<k-—k/n If 2k)/(n+1) >1,1e, k> (n+1)/2, then
k—2<k—-(2k)/(n+1)<k—1l,andk—-1<k—-k/n<k-(n+1)/(2n) <k.
Soz =k —1 (except for k =1). Otherwise, k — 1 < < k— k/n, and so there
is no integer z satisfying (3.6). If
k x k
< < —
2n+2 " 2n+4 7 2n
for some integer z with 1 < 2 < 2n+ 3,k # n+ 2 and (n + 2)/2, then (3.7)
implies that k+k/(n+1) <z < k+ (2k)/n. I (2k)/n > 1, i.e., k > n/2, then
k+2k)/n>k+1,andk<k+k/(n+1) <k+1. Soz=~k+ 1. Otherwise,
kE<k+(2k)/n<k+1,and k<k+k/(n+1) < k+ 1. So there is no integer
z satislying (3.7). Thus, from (3.6) and (3.7), for (n +1)/2 < k < n — 1,
there are two numbers (k — 1)/(2n — 2) and (k + 1)/(2n + 4) of b, between

(3.6)

(3.7)
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k/(2n + 2) and k/(2n). But, (k — 1)/(2n - 2) = (k + 1)/(2n + 4) only if
k = (2n 4+ 1)/3 is an integer (here, n = 1(mod 3)). For k = (2n + 1)/3,
(k=1)/(2n—2) = (k+1)/(2n+4) = 1/3. Hence the following two cases arise.

Case 1-1 n £ 1 (mod 3)

1<k<3-1 = thereis no element of b,
5+1<k<n = there are two different elements of b,

: k k
m [ma%}

Case 1-2 n =1 (mod 3)

1<k<3-1 = there is no element of b,
24+1<k<n k# -2—"3%1 = there are two different b.s,
k= 2l = there are two same elements (= 3) of be,

3

: k k
n [2n+2 ’ %] .

—~~

3.5). First we suppose that

T . kE+1
2n T 2n—-2 7 2n+2

for some integer  with 1 < z < 2n — 3 and z # n — 1. Then (3.8) implies
that k —k/n <z <k+1-(2k+1)/(n+1). ¥ 2k+1)/(n+1)<1,ie
k<(n-1)/2,thenk—-k/n>k—1landk+1—(2(k+1))/(n+1)<k+1,s0
x = k. Otherwise, there is no « such that (3.8) holds. Suppose that

Now we consider the case

| =
A

(3.8)

x

ma <k+12n+2

for some integer x with 1 < z < 2n+3, k # n+ 2 and (n + 2)/2. Then
(3.9) implies that £+ (2k)/n <z < k+1+ (k+1)/(n+1). If (2k)/n < 1,
ie k < n/2, then z = k+ 1. Otherwise, there is no z such that (3.9) holds.
Thus, from (3.8) and (3.9), for 1 < k < (n — 1)/2, there are two numbers
k/(2n —2) and (k4 1)/(2n + 4) of b between k/(2n) and (k + 1)/(2n + 2).
But, k/(2n —2) = (k+1)/(2n + 4) only if k = (n — 1)/3 is an integer (here,
n=1(mod 3)). For k= (n—1)/3, k/(2n—-2) = (k+1)/(2n+4) = 1/6.

k
(3.9) o <

Case 1-1’ n # 1 (mod 3)

1<k<5 -1 = there are two different elements of b,
5+1<k<n—-1 = thereisno element of b,

: k k41
n [Qn’ 2n+2:l ’
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Case 1-2' n = 1 (mod 3)

1<k<Z-1k# "—gl = there are two different elements of b,
k= ”—gl = there are two same elements (: %) of b,
7+1<k<n-1 = there is no element of b,

in [, 5],

If we indicate elements of a. and b, by @ and b, respectively, then it follows
from either (3.3) and Case 1-1’ or (3.3) and Case 1-2’ that the ascending chain
for both a. and b, is of the following form (obviously it starts from ba);

Na 1 1 1 2 2 ;
T 2n+44) 7 2m+27 20 T 2m+2 207
n/2-1 n/2—1bb n/2 n/2+1

) 7b7b7
"n4+27 2n P77 In+4+2 In+2
n/2+1 n/2+2b n—-1 n _n+1
2n P 2n4+27 777777 2 "n 427\ 2m+4)°

and so the ascending chain up to 1/2 is of the form
baab baab --- baab (n blocks of (baab)).

Since the pattern repeats on (1/2, 1), we have the form (baab)*". (b), (c) Let
n be an integer > 1. The ascending chains for the zeros of [4n + 1] and [4n + 3]
are

= 1<k<4
o {4n+1 sks "’}
k

- 1<k<dn+2
az {4n+3 Sksdn+ }

respectively. Also, the ascending chains for the zeros of [4n — 1] and [4n + 5]

are
k
= 1<k < —
bl {47’),—-1 _k?_47’L 2},

b2={4n]:_5 :1_<_k§4n+4},
respectively. Write ¢ = a1 U as and b = by U by. Since the numbers after
adding the elements of @ and b in (0, 1/2) by 1/2 again belong to a,bin (1/2,1)
and the cardinality of a1, a9, b; and be in (0,1/2) is even, respectively, we only
need to consider the elements of @ and b in the interval (0,1/2). We first find
the ascending chain for @ in (0,1/2). Since ged(4n + 1,4n + 3) = 1, we have
a; Nay = 0. Clearly the ascending chain for the zeros of both [4n + 1] and
[4n + 3] begins with 1/(4n + 3). We note that & > (4n + 1)/2 if and only if
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(k+1)/(4n+3) < k/(4n + 1). So the ascending chain for either a in (0,1/2)
is the following;

(3.10) 1 1 2 2 2n 2n  2n+1
’ dn+3 4dn+1"4n+3"4dn+1""""" 4dn+3" 4dn+1 4n+ 3’
In (3.10), the only consecutive numbers are of the form either
k k
11 — Y —— (1<k<L2
(8:11) 4n+3 4n+1 (1sk<2n)
or
k kE+1
12 — —— (1< k< 2n).
(8.12) il ingz (1Sksh)

Now we check the existence of elements of b between two numbers in (3.11)
and (3.12). First, we consider (3.11). If

k < % . k
dn+3 " 4dn-1"" 4n+1
for some integer x with 1 < x < 4n — 2, then (3.13) implies that &k — (4k)/(4n +
3) <z <k—(2k)/(4n+1). If (4k)/(4n + 3) > 1, i.e., k > (4n + 3)/4, then
k—2<k—(4k)/(dn+3) <k—1,and k—1 < k — (2k)/(4n + 1) < k. So
z =k —1. Otherwise, k —1 < 2 < k—(2k)/(4n+ 1), and so there is no integer
z satisfying (3.13). If

(3.13)

k z k
< <

4n+3 7 4dn+5 7 4dn+1

for some integer x with 1 < z < 4n+4, then (3.14) implies that &+ (2k)/(4n+
3) Lz < k+(4k)/(An+1). If (4k)/(4n+1) > 1,ie. k> n+1,thenz = k+1.
Otherwise, there is no integer z satisfying (3.14). Thus, from (3.13) and (3.14),
for n4+1 < k < 2n, there are two numbers (k—1)/(4n—1) and (k+1)/(4n+5)
of b between k/(4n+3) and k/(4n+1). But, (k—1)/(4n—1) = (k+1)/(4n+5)
only if k = (4n + 2)/3 is an integer (here, n = 1 (mod 3)). For k = (4n + 2)/3,
(k—1)/(4n—-1)=(k+1)/(4n+5) =1/3.

Case 2-1 n #Z 1{mod 3)

(3.14)

1<k<n = there is no b,
n+1<k<2n, = there are two different b’s,

: k k
m |:4n+3’ 4n+1} '

Case 2-2 n = 1 (mod 3)

1<k<n = there is no b,
n+1<k<2nk#2 = there are two different b's,

3
k=142 = there are two same b's (= 1),

- k&
m [4n+3 ’ 4n+1:| :
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We consider the case for (3.12). First we suppose that

k T . k+1
dn+1 " 4n-1" 4n+3
for some integer z with 1 < z < 4n—2. Then (3.15) implies that k& — (2k)/(4n+
<z<k+1—(4k+4))/(4n+3). If 4k +4))/(4n+3) < 1,ie,k<n-—1,
then k — (2k)/(4n+1)>k—1land k41— (4k+4))/(dn+3) > k,so z = k.
Otherwise, there is no z such that (3.15) holds. Suppose that

k <« T . k+1
dn+1 7 4n+5 7 4n+3
for some integer x with 1 < z < 4n+4. Then (3.16) implies that k+(4k)/(4n+
1) <z < k+1+(2k+2)/(4n+3). If (4k)/(4n+1) < 1,ie., k < n,thenz = k+1.
Otherwise, there is no z such that (3.16)holds. Thus, from (3.15) and (3.16),
for 1 <k < (n—1)/2, there are two numbers k/(4n—1) and (k+1)/(4n+5) of
b between k/(4n—1) and (k+1)/(4n+3). But, k/(4n+1) = (k+1)/(4n+3)
only if k = (4n — 1)/6 is an integer. But 6 { (4n — 1) for all n. Hence we have

(3.15)

(3.16)

1<k<n—-1 = there are two different b's,
(3.17) k=n = there is only one b,
n+1<k<2n = thereisnob,

in [ 4n’:1, 5;13}. If we indicate elements of a and b by a and b, respectively,

then it follows from (3.10), Case 2-1 and (3.17) or (3.10), Case 2-2 and (3.17)
that the ascending chain is of the following form (obviously it starts from ba);

(1 S WM TN S
T 4dn+5)4n+3"4n+1" 7 T4n+3’4n+1" 707

n n n+1 n+l1l n+2
An+3"4n+1" "4n+3" 7 T4n+1"4n+37 777
2n  2n+1 2n  2n+1 _2n+2
4n+1"4n+3"" 7 4n+1"4n+3’ (" 4n+5)’

and so the ascending chain up to 1/2 is of the form
(baab)™(abba)™ab (i.e., n blocks of (baab), n blocks of (abba) and ab).
Since the pattern repeats on (1/2,1), we have the form
(baab)™ (abba)?™+* (baab)™.

The case (a,8;7v,17) = (4n + 3,4n + 5;4n + 1,4n + 7), where n > 0, is very
similar to the previous case (o, 8;v,7) = (4n+1,4n+ 3;4n—1,4n+ 5), where
n > 2. In fact, the ascending chains for the zeros of [4n + 3] and {4n + 5] are

k
o {4n+3 Sksdnt }’

k
a2 {4n+5 Sksan+ }
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respectively. Also, the ascending chains for the zeros of [4n + 1] and [4n + 7]

are
by = 1 <k<4n
1 {1 1 = = },

k
= 1<k <L
ba {4n+7 1_k_4n+6},

respectively. Write ¢ = a1 Uas and b = b; U by. Then we can show that the
ascending chain up to 1/2 is of the form

(baab)™ (baba)(abba)™ab
(i.e., n blocks of (baab), baba,n blocks of (abba) and ab).
Since the pattern repeats on (1/2,1), we have the form
(baab)™ (baba)(abba)™ab(baab)™ (baba)(abba)™ab.
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