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NOTE ABOUT THE ISOCHRONICITY OF HAMILTONIAN
SYSTEMS AND THE CURVATURE OF THE ENERGY

Bras HERRERA GOMEZ

ABSTRACT. In this note we show the relationship between the period
of a isochronous center of a planar Hamiltonian system and the Gauss
curvature of the surface § = (z,y, H(z, y)) where H is the energy function
of the system.

1. Introduction

It is well known that the planar analytic Hamiltonian systems are the planar
differential systems of the form

z = —6_H($7y)
o

where H is an analytic function on R%. The solutions of these systems are
contained in the level curves {H(z,y) = h, h € R}. A point p is called center
if it has a neighborhood formed by periodic orbits. The largest neighborhood
of p which is entirely covered by periodic orbits is called the period annulus of p
and we will denote it by P. The function which associates to any periodic orbit
~vin P its period is called the period function. The center is called isochronous
center when the period function is a constant w. It is well known that only
nondegenerate centers can be isochronous. And from now on we will assume
that H(0,0) = 0 and the system (1.1) has a nondegenerate center at the origin.

Cima, Mafosas and Villadelprat in [1] study the isochronous centers of
Hamiltonians systems of the form

(1.2) H(z,y) = A(z) + B(z)y + C(z)y”

with A, B, C analytical functions. They prove that if the center is isochronous
of period w then

d? (4AC - B? 82
(1.3) ———( s ) (0) =

w?’
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Clearly, this allows to calculate w in an analytic way and without carrying out
any integration.
However, in fact, this is a particular case of the following general result.

2. Result

Theorem 1. Let
S=T7:UcCR?->R?
(z,y) = Z(z,y) = (z,y, H(z,y))

be the surface generated by the energy function H. Let K = K,0,0)(S) be the
Gauss curvature of S at the point (0,0,0). Then:
If the center is isochronous of period w we have

Kw? = 4n°.
Proof. We know that exist two analytical functions f, g such that
fP+g°
H=
2 ?
with £(0,0) = ¢(0,0) = 0 and
8 9L 27
(2.1) det<g; gg>:;
dxr Oy

in every point of a neighborhood U of the center point (0,0), (see [2], [3]). We
consider the surface:

S=7 :UcCcR?*->R?
2z, y) + 9%z, y)

(z,9) = T(z,9) = (2,9, H(z,9)) = (2,9, 5 )-
Then, the Gauss application is
N:§— 52
?(l',y) - N(iﬁ,’y) = ~8+3—i = (N](.Z',y),NQ(.Z',y),N;g(SL',’y))
|5 > 5|
y
with
F8i+g35
N z, —_ Iz Jx
oY) = = G
fﬂﬂzé;‘,Z
Nz(x7y) = - a_f ﬂa; 6é_f 8g 2
\/(f zt9 z) +(f y+g y) +1
Ni(z,y) = B .
) = T e

We calculate and obtain that the Weingarten endomorphism
dN(o,o,o)(S) : T(o,o,o)(S) - T(o,o,o)(S)
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at the point (0,0,0) in the basis {@ =7, % = xg} has the associated ma-

ox
trix
2 2

_(fﬁ) _<@q) _9f0f _ 8909

ox Oz 8z Oy oz dy
dN, S o= .
0,00)(9) |z Coror oe0e _(o5\2 (Qa)z l(0,0)

Az dy dz Oy oy Oy

We also calculate and obtain:

900 _0100)",
Oz Oy Oy Oz 0.0) -

2
) I(0,0)) ’

This complete the proof. O

K = K(,0,0)(S) = det(dN(g,0,0)(5) |z2) = (

_ <det (

and, using (2.1), this implies

Put in other way

HEEE
siesis

Kw? = 472

3. Consequence

We have said in the introduction that (1.3) is a particular case because: if
the system has the form (1.2) then

% a7 =002 0+ Lwy+ Law)
ow

W= T3 = (0,1, B(z) + 2C(z)y).

We calculate and obtain:
dN(0,0,0)(S) : T(0,0,0)(8) = T(0,0,0)(5)
d2A dB
1 |(0,00= dN0,0.0)(Z1 (0.0)) = —w(o)ff l¢0,0) _%(O)B l(0,0)

dB
B |(0,0)_’ dN(O,O,O) (B |(0,0)) = —%(O)ac_{ |(0,0) —20(0)53 [(0,0) .
and using the Theorem 1 we have
d?A dB 4n?
=2 — 22(0)% = —-.
cO220)- 02 =T
. - dA
But if the center is isochronous then E;(O) = A(0) = B(0) = 0 (see [1]);
and in consequence

& (4AC — B A \
LA B o) = ac0) L4 0) ~ 2% 02 -
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