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SOME EXAMPLES OF QUASI-ARMENDARIZ RINGS

EBRAHIM HASHEMI

ABSTRACT. In [12], McCoy proved that if R is a commutative ring, then
whenever g(z) is a zero-divisor in R[z], there exists a nonzero ¢ € R such
that cg(z) = 0. In this paper, first we extend this result to monoid rings.
Then for a monoid M, we give some examples of M-quasi-Armendariz
rings which are a generalization of quasi-Armendariz rings. Every re-
duced ring is M-quasi-Armendariz for any unique product monoid M
and any strictly totally ordered monoid (M, <). Also T4(R) is M-quasi-
Armendariz when R is reduced and M-Armendariz.

1. Introduction

Throughout this paper R denotes an associative ring with identity. Rege and
Chhawchharia [15] introduced the notion of an Armendariz ring. A ring R is
called Armendariz if whenever polynomials f(z) = ag+a12+- - - +a,z™, g(x) =
bo + b1z + -+ + bnz™ € R[z] satisfy f(z)g(z) = 0, then a;b; = 0 for each ¢, j.
Some properties of Armendariz rings have been studied in Rege and Chhawch-
haria [15], Armendariz [1], Anderson and Camillo [2], and Kim and Lee [9].
According to Hirano [5], a ring R is called to be quasi-Armendariz if whenever
polynomials f(z) = ap+a12+ - +a,z", g(z) = bo+by1z+- - -+b,,z™ € R[z] sat-
isfy f(x)R([z]g(z) = 0, then a;Rb; = 0 for each ¢, j. In [5], Hirano studied some
properties of quasi-Armendariz rings. In [17], Zhongkui studied a generalization
of Armendariz rings, which is called M-Armendariz rings, where M is a monoid.
A ring R is called M-Armendariz if whenever o = ai1g1 + -+ + angn, B =
bihy 4 -+ + bhm € R[M], with g;,h; € M satisfy a8 = 0, then ab; = 0
for each i,j. Recall that a monoid M is called a u.p.-monoid (unique prod-
uct monoid) if for any two nonempty finite subset A, B C M there exists an
element g € M uniquely presented in the form ab where a € A and b € B.
The class of u.p.-monoid is quite large and important (see [3, 13, 14]). For
example, this class includes the right or left ordered monoids, submonoids of
a free group, and torsion-free nilpotent groups. Every u.p.-monoid M has no
non-unity element of finite order. For a = a;g1 + -+ + angn € R[M] with
a; # 0 for each i, length(a) is defined to be n — k + 1.
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In this paper, for a monoid M, we give some examples of M-quasi-Armend-
ariz rings which are a generalization of quasi-Armendariz rings. Every reduced
ring is M-quasi-Armendariz for any unique product monoid M and any strictly
totally ordered monoid (M, <). Also, T4+(R) is M-quasi-Armendariz when R is
reduced and M-Armendariz.

2. Some examples of quasi-Armendariz rings

McCoy [12] proved that if R is a commutative ring, then whenever g(x)
is a zero-divisor in R[z] there exists a nonzero element ¢ € R such that
cg(z) = 0. Hirano [5] extend this result to a non commutative ring as fol-
low. If rpi) (f(z)R[z]) # 0 for f(z) € R[z], then rgp(aRz]) N R # 0. We
shall generalize this result to monoid rings as follows:

Theorem 2.1. Let M be a u.p.-monoid or (M, <) be a totally ordered monoid.
Let a be an element of R{M]. If rgip(aR[M]) # 0 then rgan(aR[M])NR # 0.

Proof. We prove it for a u.p.-monoid. The other case is similar. Let a = a191 +
-+ -+@angn. lf n =1, then assertion is clear. Let n > 2. Assume that 5 = b1h1 +
-+ + + bhm € R[M] be a nonzero element of minimal length in g (eR[M]).
Since (aR[M]8) =0, aRB = 0. Since M is a u.p.-monoid, there exists i, j with
1 <i<n,1< 5 <msuch that a;h; is uniquely presented by considering two
subsets A = {g1,...,9n}, B={h1,...,hm} of M. Thus a;cb;g;h; = 0 for each
¢ € R and hence a;Rb; = 0. Thus 0 = a(R[M]a; RIM))(b1h1 + -« + bhm) =
aR[M](aiR[M](blhl +-- -+bj_1gj_1 -I-bj+1 h’j-l-l +-- '+bmhm)). By hypothesis,
a;R(brh1+-- -+bj_1gj_1 +bi41hj1+-- +bmhm) = 0. Therefore a; Rb; = 0 for
each 1 <t <m. Hence (a191 4+ 0i-10i—1+0it1gi+1+ -+ angn ) (R[M]F) =
0. Since M is u.p.-monoid, there exist r, s withr € {1,...,i~1,i4+1,...,n} and
s € {1,...,m} such that g,h is uniquely presented by considering two subsets
A={g1,.-19i-1,9i+1s---»9n}, B ={h1,...,hm} of M. Thus a,cbsg.hs =0
for each ¢ € R and hence a,Rbs; = 0. Thus 0 = o(R[M|a,R[M])(bih; +-- +
bmhm) = OzR[M](arR[M](blhl 44 bso1gs—1 F bsr1hsr1 + -+ bmhm). By
hypothesis, a,.R(bihi + -+ bi—1gi—1+bjr1hji+-- -+ bmhm) = 0. Therefore
ar-Rb; = 0 for each 1 <t < m. Repeating this process, we obtain a;Rb,, = 0
for each 1 < i < n. Hence by, € rgpar (R[M]). Therefore rgppn(aR[M])NR #
0. O

Corollary 2.2 ([5], Theorem 2.2). Let f(z) be an element of Rlz]. If rgiy
(f(z)R[z]) # 0, then i (f(z)Rz]) N R #0.

We investigate a generalization of quasi-Armendariz rings which we call an
M-quasi-Armendariz ring.

Definition 2.3. Let M be a monoid. We say that R is M -quasi-Armendariz,
ifa=ag1+ - +angn,f =bih1 + - + bnhm € R[M] satisfy aR[M]G = 0,
then a;Rb; = 0 for each i, j.
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If M = (NU {0}), then R is M-quasi-Armendariz if and only if R is
quasi-Armendariz. If R is reduced and M-Armendariz, then R is M-quasi-
Armendariz.

Proposition 2.4. Let M be a u.p.-monoid and R be a reduced ring. Then R
1s M -quasi-Armendariz.

Proof. Let o = a1g1+ - -+angn and 8 = b1h1+- - -+bphm € R[M] be such that
aR[M]B = 0. We show that a;Rb; = 0 for each 4, j. We proceed by induction
on m. It is clear for m = 1. Since M is a u.p.-monoid, there exists 7, j with
1<i<nandl <j < msuch that g;h; is uniquely present by considering two
subsets A = {g1,...,9n} and B = {hi,...,hp} of M. Thus a;Rb;g;h; = 0
and that a;Rb; = 0. Thus 0 = (a191 +- -+ angn) R[M]a;(bihy + - - - +bmhy) =
(a1g1 4 +angn)R[M](aibihi+- - -+abj_1hj_1+aibjp1hjr1 +- -+ aibmhy).
By induction, it follows that a; Ra;b, = 0for ¢ = 1,...,m. Then a;Rb, = 0, for
each ¢ =1,...,m, since R is reduced. Thus (a1g1 +---+a;_19i—1+ait1gi+1 +
angn)R[M](bih1+- -+ byrhpy) = 0. Continuing this procedure yield a;Rb; = 0
for each 1 < i <mn, 1< j < m. Therefore R is M-quasi-Armendariz. 0O

Let (M, <) be an ordered monoid. If for any g1,g2,h € M, g1 < go implies
that g1h < gz2h and hg; < hgs, then (M, <) is called a strictly ordered monoid.

Proposition 2.5. Let M be a strictly totally ordered monoid and R a reduced
ring. Then R is M -quasi-Armendariz.

Proof. Let oo = a191++ - +angn and 8 = bihy1+- - -+bp by, € R[M] be such that
aR[M|f=0and g1 < -+ < gpn, h1 < --+ < hy. We use transfinite induction
on the strictly totaly ordered set (M, <) to show that a;Rb; = 0 for each ¢, j.
If there exist 1 <4 < nand 1 < j < m such that g;h; = g1h1, then g1 < g;
and hy < h;. If g1 < g; then g1hi1 < gihi € gsh; = g1hy a contradiction. Thus
g1 = g;. Similarly, h; = h;. Hence a; Rb; = 0. Now suppose that w € M is such
that for any g; and h; with g;h; < w, a;Rb; = 0. We will show that a;Rb; =0
for any g; and h; with g;h; = w. Set X = {(g;,h;)|g:h; = w}. Then X is a
finite set. We write X as {(g;,,h;,)|t = 1,...,k} such that g;; < -+ < g;,.
Since M is cancellative, g;, = g;, and g; by, = gi,hj, = w imply hy, = hy,.
Since < is a strict order, g;;, < g4, and g; h;, = gi,hj, = w imply h;, < hy,.
Thus we have hj, <--- < hj, < h;,. Now

k
(1) Z aibj = Zaitbjt =0.
t=1

(gi,hj)eX

For any t > 2, g, h;, < gi,hj, = w, and thus, by induction hypothesis, we have
Az Rbj, = 0 for each ¢t = 2,..., k. By multiplying a;, to Eq.(1), from the left
hand-side, we have a;, a;, b;, = 0. Since R is reduced, we have a;,b;, = 0. Now
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Eq.(1), becomes

k
(2) Zaitbjt = 0.
t=2

By multiplying a;, to Eq.(2), from the left hand-side, we obtain a;,b;, = 0 by
the same way as above. Continuing this process, we can prove a;b; = 0 for
any ¢,7 with g;h; = w. Therefore, by transfinite induction, a;b; = 0 for any
i,5. Thus a;b; = 0 for any 4, j, since R is reduced. Therefore R is M-quasi-
Armendariz. O

Corollary 2.6. Let R be a reduced ring. Then R is Z-quasi-Armendariz, that
is for any a = a_mx ™ + -+ byzd, B =b_pz " + -+ + byx? € Rz, Y], if
aR[z,z7 '8 = 0, then a;Rb; =0 for each i,j.

Proposition 2.7. Let M be a u.p.-monoid or (M, <) be a strictly totally or-
dered monoid and I an ideal of R. If I is a reduced and R/I is M -quasi-
Armendariz, then R is M -quasi-Armendariz.

Proof. We prove it for u.p.-monoid. The other case is similar. Let @ = a191 +
“+ 4 angn and B = byh1 + --- + byyhm € R[M] be such that aR[M]|S = 0.
Since M is a u.p.-monoid, there exists ¢, with 1 <4 <nand 1 < j < m such
that g;h; is uniquely present by considering two subsets A = {g1,...,9n} and
B = {hl, ‘e ,hm} Of M Thus ainjgihj = 0 and that ainj = 0 Thus
0= (ai1g1 4+ + angn)R[M]a;(bihy + - + b))
= (@191 + - + angn) RIM](aibrh1 + - - -
+abj_1hj1 + aibjrrhjp + -+ abmhn).

Thus, by induction hypothesis, we have a; Ra;b; = O foreach j = 1,...,m. Note
that in (R/I)[M], (@1g1+ -+ 8ngn)R/I(b1h1+- - -+ bmhm) = 0. Thus we have
a;Rb; C I for each ¢, j, since R/I is M-quasi-Armendariz. Hence (a;b;)2 = 0
and that a;b; = 0 for j = 1,...,m, since I is reduced and a;b; € I. Thus
0=(a191+ - +ai—1gi—1+ait19i41+ +angn)RIM|(b1h1+- -+ bnhm) = 0.
Therefore, by induction on m+n, we have a; Rb; = 0 for each 4, j. Consequently
R is M-quasi-Armendariz. O

Recall that a monoid M is called torsion-free if the following property holds:
if g,h € M and k > 1 are such that g* = h*, then g = h.

Corollary 2.8. Let M be a commutative, cancellative and torsion-free monoid.
If one of the following conditions holds, then R is M -quasi-Armendariz:

(1) R is reduced.
(2) R/I is M-quasi-Armendariz for some ideal I of R and I is reduced.

Proof. f M is commutative, cancellative and torsion-free, then by [16] there
exists a compatible strict total ordered < on M. Now the results follows from
Proposition 2.5 and 2.7. |
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Proposition 2.9. Let M be a cyclic group of order n > 2 and R o ring with
0+# 1. Then R is not M -quasi-Armendariz.

Proof. Suppose that M = {e,g,¢%...,9" '}. Let a = le+1g+1g%> +--- +
1g" ! and 8 = le+(—1)g. Then acB = 0 for each ¢ € R and that aR[M]3 = 0.
Thus R is not M-quasi-Armendariz. O

Example 2.10. Let R be an M-Armendariz and reduced ring. Let

G a2 a3 014
0 a a23 Q24
0 0 a Q34
0 0 0 a

Tu(R) = |a,a;; € R

Then Ty(R) is M-quasi-Armendariz. It is easy to see that there exists an
isomorphism of rings T4(R)[M] — T4(R[M]) defined by:

0 a* afy df,
1; 0 0 a* dafy 9k
0 0 0 d
ZZ=1 aF gy Ziszl af, gk Egﬂalfsgk 22:1 a¥, gk
. 8 Ekzbakgk %1%:1 aalzjcsgk leczl ag4gk
k=1 9"Gk D po1 @540k
0 0 0 ZZ:I akgk
o Q12 13 Q4
_ 0 o ax an
- 0 0 (0% 34
0 0 0 @

Let @« = A1g1 + -+ + Asgs and 8 = Bih1 + -+ + Bprhy € Ty(R)[M] such
that aTy(R)[M]B = 0. We claim that A;Ty(R)B; =0foralli=1,...,s,j =
1,...,m. Assume that
aj, ajy aiS a§4
0 a3 a3 ay
0 0 a% afy
0 0 0 (124
and
11 biz bzﬁ i
B, = 0 B2 D3 by

0 0 0 b,
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with af, = a}, and b, = b, for each 4,7, k,¢. Let

LR s g
21':1 ai119: Zi:1 Q129:
0 S J

8 1 .
2ic @139i

7 s i ES ! :

X = 0 i=1 92291 %g:l 0339: %gzl 0249i
0 =1 3539i =1 0349i
0 0 0 Zzs 1 @440

Q11 Q12 (13 (4

_ 0 axp ooz o

0 0 o33 a3

0 O 0 Q44

and

Y = 0 2 im1 D52 %g:l b339i %g:l b49i
0 0 i=1 b330 =1 D849
0 0 0 25—1 bfmgi

Bir Biz Bz Pu

_ 0 Pa2 Poz P

0 0 B33 O

6 0 0 pu

Then we have XAY = 0 for each A € Ty(R[M]). We show that «;; 81, = 0 for
each i =1,2,3,4,j=1,2,3,4and k = 1,2,3,4. Since XTu(R[M])Y = 0, we

have
@11
0
and
Q22
0
0

By ([15], Proposition 1.7), @11611 = a11612
013033 = ooffes = op3fss = 0 and agefae

12
22

Q23

33
0

@13
Qo3
33

Q4
Q3q
Qqq

Bt Bz Bz
0 Bz Po3 | =0
0 0 g
Boo DBaz  Pos
0 fBss PBss | =0.
0 0 B
= o1 fi3 = 0220 = 123 =
= ap2f23 = 22804 = o334 =

Oz24,344 = a33634 = 0134,644 = (. Since XT4(R[A/[])Y = O, we have a11,6’14 +
a120824 + 013834 + 014844 = 0. Since R[M] is reduced and a1 = «oj; and
;ifin = 0 for each i = 2, ..., n, if we multiply this equation on the left side by
a1, then a11a11ﬂ14 = 0 and that a11ﬁ14 = 0. Hence a12,324+a13534+a14ﬂ44 =
0. Also if we multiply this equation on the right side by (44, then a14844844 = 0
and that o444 = 0, since a4 = B;; for each j and R[M] is reduced. Thus
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019024 + 130334 = 0. Hence

12 0 0 4]
0 12 (13 0
X 0 0 12 0 Y
0 0 0 a
or1a12811 e T 013012834
_ 0 Q20012820 e e —0
0 0 a33a12033 ' '
0 0 0 annamﬂnn

Thus a13012034 = a1200130634 = 0, since R[M] is reduced. Now multiplying
012024 -l- (113,834 = 0 on the left by a2, we obtain qiof4 = 13034 = 0.
Hence al b, = 0 for each r,s,t,4,j > 1, since R[M] is M-Armendariz. Thus

L

at.cbl, = 0, for each ¢ € R, since R is reduced. Consequently, A;Cb; = 0 for

8§

each C € Ty(R). Therefore Ty(R) is M-quasi-Armendariz.
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