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COMMON FIXED POINT THEOREM FOR WEAKLY
COMPATIBLE OF FOUR MAPPINGS

SHABAN SEDGHI GHADIKOLAEE AND NABI SHOBE

ABSTRACT. In this paper, a common fixed point theorem for weak com-
patible maps in complete fuzzy metric spaces is proved.

1. Introduction and preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [22] in 1965.
Since then, to use this concept in topology and analysis many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [5] and Kramosil and Michalek [9] have introduced the concept of
fuzzy topological spaces induced by fuzzy metric which have very important
applications in quantum particle physics particularly in connections with both
string and €(®) theory which were given and studied by El Naschie [1, 2, 3,
4, 19]. Many authors [7, 11, 16, 13, 14, 15] have proved fixed point theorem
in fuzzy (probabilistic) metric spaces. Vasuki [20] obtained the fuzzy version
of common fixed point theorem which had extra conditions. In fact, Vasuki
proved fuzzy common fixed point theorem by a strong definition of Cauchy
sequence (see Note 3.13 and Definition 3.15 of [5] also [18, 21]). In this paper,
we prove a common fixed point theorem in fuzzy metric spaces for arbitrary
t-norms and modified definition of Cauchy sequence in George and Veeramani’s
sense.

Definition 1.1. A binary operation « : [0,1] x [0,1] — [0, 1] is a continuous
t-norm if it satisfies the following conditions

(1) * is associative and commutative,

(2) * is continuous,

(3) ax1=aforallacl(0,1],

(4) a*b < c+d whenever ¢ < cand b <d, for each a,b,¢,d € [0,1].

Two typical examples of continuous t-norm are a*b = ab and a+b = min(a, b).
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Definition 1.2. A 3-tuple (X, M, «) is called a fuzzy metric space if X is an
arbitrary (non-empty) set, * is a continuous t-norm, and M is a fuzzy set on
X?x (0, 00), satisfying the following conditions for each z,y,z € X and t,s > 0,

(1) M(z,y, t) >0,

(2) M(z,y,t) =11if and only if z =y,

(3) M(z,y,t) = M(y,z,1),

(4) M(z,y,t)* M(y,z,8) < M(z,2,t+s),

(5) M(z,y,.):(0,00) — [0,1] is continuous.

Let (X, M, %) be a fuzzy metric space . For ¢ > 0, the open ball B(z,,t)
with center € X and radius 0 < r < 1 is defined by

B(z,r,t)y={ye X : M(z,y,t) >1—~r}.

Let (X, M, *) be a fuzzy metric space. Let 7 be the set of all A C X with
z € A if and only if there exist ¢ > 0 and 0 < 7 < 1 such that B(z,r,t) C A.
Then 7 is a topology on X (induced by the fuzzy metric M). This topology is
Hausdorff and first countable. A sequence {z,} in X converges to z if and only
if M(zn,z,t) — 1 asn — oo, for each t > 0. It is called a Cauchy sequence if
for each 0 < £ < 1 and ¢ > 0, there exits ng € N such that M (zn, &, t) > 1—¢
for each n, m > ng. The fuzzy metric space (X, M, %) is said to be complete if
every Cauchy sequence is convergent. A subset A of X is said to be F-bounded
if there exists t > 0 and 0 < r < 1 such that M (z,y,t) > 1 —r for all z,y € A.

Lemma 1.3 ([5]). Let (X, M,*) be a fuzzy metric space. Then M(z,y,t) is
nondecreasing with respect to t, for all x,y in X.

Definition 1.4. Let (X, M, *) be a fuzzy metric space. M is said to be con-
tinuous function on X2 x (0, co) if

im M(Zn,Yn,tn) = M(z,y,t).
n—oo

Whenever a sequence {(y, Yn,tn)} in X2x(0, 00) converges to a point (z,y,t) €
X% x (0,00) i.e.

lim M(%n,z,t) = im M(yn,y,t) =1and lim M(z,y,t,) = M(xz,y,t).
n—00 n—0o0

n—o0
Lemma 1.5. Let (X, M, «) be a fuzzy metric space. Then M 1is continuous
function on X? x (0,00).
Proof. See Proposition 1 of [10]. O

Example 1.6. Let X = R. Denote a * b = a.b for all a,b € [0,1]. For each
t €]0, 00|, define
t
M ) 7t = T T
(z,y,1) P pe—

for all z,y € X.
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Definition 1.7. Let A and S be mappings from a fuzzy metric space (X, M, )
into itself. Then the mappings are said to be weak compatible if they commute
at their coincidence point, that is, Az = Sz implies that ASz = SAz.

Definition 1.8. Let A and S be mappings from a fuzzy metric space (X, M, *)
into itself. Then the mappings are said to be compatible if

lim M(ASzn, SATn,t) =1,Vt> 0

n—o0

whenever {x,} is a sequence in X such that

lim Az, = lim Sz, =z € X.
n—oo n—00

Proposition 1.9 ([17]). Self-mappings A and S of a fuzzy metric space (X, M *)
are compatible, then they are weak compatible.

Lemma 1.10. Let (X, M, ) be a fuzzy metric space. If we define Ex ar : X2 —
R* U {0} by
E\xym(z,y) =inf{t >0 : M(z,y,t) >1—A}
for A € (0,1), then
(i) for each p € (0,1) there exists A € (0,1) such that
E. v (z1,20) < Ex (1, 22) + Expr(22,23) + - + Ex M (@n—1,%0)

for any z1,20,...,2, € X

(ii) The sequence {Zn}nen is convergent in fuzzy metric space (X, M, x) if
and only if Ex p(Tn,z) — 0. Also the sequence {xy,}nen is Cauchy sequence
if and only if it is Cauchy with Ey ar.

Proof. (i). For every u € (0,1), we can find a A € (0,1) such that

n
A=N* A =Nx-x(1=X)21—p
by triangular inequality we have

M(z1,ZTn, Ex p(z1,22) + Ex p(22,23) + -+ + Ex p(Tne1, Tn) + 1)
M(z1, 2, Ex p(z1,22) + 8) % - M(zp—1, 20, Ex m(Tn—1,20) +9)

v

n
N

> 1=-XN)x(1=-A)x---*x(1-A)>21-p
for very 8 > 0, which implies that
B, m(z1,2,) < Ex (21, 22) + Exp(22,23) + - 4+ Ex m(Tn-1,2n) + né.

Since ¢ > 0 is arbitrary, we have
Eum(@1,20) < Exm(zy,02) + Exy (22, 23) + - + Ex m(Tn—1,Tn)
(ii). Note that since M is continuous in its third place and

Eyym(z,y)y=inf{t >0 : M(z,y,t)>1- A}
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Hence, we have
M(zp,z,m) > 1— A<= E) y(zp,z) <7
for every nn > 0. O
Lemma 1.11. Let (X, M, x) be a fuzzy metric space. If
M(zpn, Zpt1,t) > M(zo,2z1,k"t)
for some k > 1 and for every n € N. Then sequence {x,} is a Cauchy sequence.
Proof. For every A € (0,1) and z,,, zp+1 € X, we have
Expm(Zns1,2n) = Wnf{t>0 : M(zpy1,Tn,t) > 1— A}
< inf{t>0 : M(zo,z1,k"t) >1~ A}
— inf{kin . M(zo,z1,t) > 1 = A}

1

k_ninf{t >0 : M(xo,azl,t) >1-—A}
1

= k—nE,\,M(wo,ilh).

By Lemma 1.10, for every p € (0,1) there exists A € (0,1) such that
E,u,,M(:L'na xm)

< Exm(@n, o) + Exopg (Trg1, Zog2) + -+ Fa p (Zone1, Tm)

1 1
B m (2o, 1) + g Eam(To,21) + - + 7 Ex m (w0, 71)

- k- fknt1 km
m—
= Ex m(zo, 1) Z
Hence sequence {z,} is Cauchy sequence. g

2. The main results
A class of implicit relation

Let ® denotes a family of mappings such that each ¢ € ®, ¢ : [0,1]3 —
[0,1], and ¢ is continuous and increasing in each co-ordinate variable. Also
¢(s,8,s8) > s for every s € [0,1).

Example 2.1. Let ¢ : [0,1]> — is define by
(i) ¢(z1,2,23) = (min {z;})" for some 0 < h < 1.
(ii) ¢(z1,z2,73) =z} for some 0 < h < 1.
(ili) ¢(x1,x2,23) = max {z{*, 252, 23°}, where 0 < o; < 1 fori =1,2,3.
In this paper p is a positive real number and ¢*(s, s, s) = [¢(s, s, s)]? for
every s € [0,1). Also

M(Sz, By,t) v M(Ty, Az,t) = max{M (Sz, By, t), M(Ty, Az,t)}.
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Our main result, for a complete fuzzy metric space X, reads follows:

Theorem 2.2. Let A,B,S and T be a self-mapping of complete fuzzy metric
space (X, M, %), satisfying the following conditions:

(i) (A,S) and (B,T) are weakly compatible pairs such that A(X) C T(X)
and B(X) C S(X) also A(X) or B(X) is a closed subset of X;

(ii) there exist v, ¢ € @ such that for all z,y € X,

M?"(Az, By, t)
M(Sz, Ty, kt), M(Az,Sz,kt)
2p ’ ’ ’ 3 ?
2 als)¢ ( M(By, Ty, kt)
+ b(s)u? M?(Sxz, Ty, kt), M(Sz, Az, kt)M (Ty, By, kt)
M(Sz, By, kt) v M(Ty, Az, kt)
for some k > 1, where a,b: [0,1] — [0,1] are two continuous functions such
that a(s) + b(s) =1 for every s = M(z,y,t).
Then A, B and S,T have a unique common fized point in X.

Proof. Let zo € X be an arbitrary point as A(X) C T(X), B(X) C S(X), there
exist z1,z2 € X such that Axg = Tz, Bx; = Sze. Inductively, construct
sequence {y,} and {z,} in X such that y2, = Azo, = TToni1, Yont1 =
Bzopyi = Sxapye, forn=0,1,2,....

Now, we prove {y,} is a Cauchy sequence. For simplicity, we set

dn(t) = M(Yn,Ynt1,t), n=0,1,2,....

¥

Then we have
dzh (¢)
= M (yan, Y2nt1, 1)
= M*(Azsn, Bxony1,t)

M(S.’L‘Qn Txont1 kt) M(ACL‘Qn Sz, kt)
2p ) +1, ) ’ ’
2 a(s)¢ ( M(B$2n+1,TI2n+1, k‘t)

+b(s)y”

[ M*(Sz2p, Txoni1, kt), M(S@2n, ATan, kt) M(TZon 11, Brant1, kt)
M(S:L’gn, Bzxgyia, k:t) vV M(T$2n+1, Azxoy,, kt) )

We prove that dop(t) > dgn_l(t).NOW, if don(t) < dap—1(t) for some n € N,
since ¢ and ¢ are increasing functions, then

dzb (1)
> a(8)d*P (dan_1(kt), dan_1(kt), d2n (kt))

+ ()9 (d3,_ 1 (kt), don_1 (kt)dan (Kt), 1)
> a(s)9? (dzn (kt), dan (kt), dor (kt)) + b(s)yP (d3,, (kt), d3,, (kt), 1)
> a(s)dah (kt) + b(s)d5h (kt) = d3 (kt),
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hence we have da,, (t) > don (kt) is a contradiction. Therefore day, (t) > day—-1(t).

Similarly, one can prove that dop+1(t) > don(t) for n = 0,1,2,.... Conse-
quently, {d,(t)} is a increasing sequence of non-negative real. Thus
dn(t)

> a(5)¢” (dan—1(kt), don—1(kt), don—1(kt)) + b(s)y?(d5,_1 (t), d5,,_; (Kt), 1)

> a(s)da, o (kt) + b(s)dz,_y (kt) = dih_, (kt).
That is don(t) > don—1(kt), similarly, we have dony1(t) > don(kt). Thus

dn(t) > dn—1(kt).
That is
M(Yn, Ynt1,t) 2 M(Yn—1,Yn, kt).
So
M(Yns Ynr1,t) 2> M(Yn_1,Yn, kt) > -+ > M(yo,y1, k™).

By Lemma 1.11 sequence {y,} is a Cauchy sequence, then it is converges to

y € X. That is

lim ¥y, = lim y2n = lim yon41
n—oe n—+00 n—00

= lim Az, = lim Bzoni; = lim Sz, = lim Txo,y1 = v.
n-—oo n—oo n—oo n-—+00

As B(X) C S(X), there exist u € X such that Su = y. So, we have

M2P(A’U,, Bx2n+1, t)

M(Su Tzony1,kt) M(Su, Au kt)
2p P + 3 3
z als)9 ( M(Tzons1, Bronit, kt)

+ b(s)gp? M?(Su, Txani1, kt), M(Su, Au, kt)M(Tx2n 11, BLoni1, kt)
M(Su, Bxont1, kt) vV M(Tx2n+1’ Au, k‘t) .

By continuous M and ¢, on making n ~— oo the above inequality, we get

M?(Au,y,t) > a(s)¢” ( M(y,y.kt), M(Au,y,kt), M(y,y,kt) )

M2(y,y,kt), M(Au,y, kt)M(y,y, kt)
Fo(s)y” ( M(y,y, kt) v M(y, Au, kt) :

hence we have

M?(Au,y,t) > a(s)$™ (M (Au,y, kt), M(Au,y, kt), M (Au, y, kt))
+b(s)9P (M?(Au, y, kt), M (Au,y, kt) M (Au, y, kt), 1).

If Au # y, by above inequality we get
M?(Au,y,t) > a(s)M* (Au,y, kt) + b(s)MP(Au, y, kt) = M?(Au, y, kt)
which is contradiction. Hence M (Au,y,t) =1, i.e Au =y. Thus Au = Su=y.
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As A(X) C T(X) there exist v € X, such that Tv = y. So,
M?(y,Bu,t) = M?(Au,Bu,t)
> a(s)¢*P(M(Su, Tv, kt), M(Au, Su, kt), M (Bv, Tv, kt))
+b(s)YP(M?(Su, T, kt), M(Su, Au, kt)M(Tv, Bu, kt),
M(Su, Bv,kt) vV M(Tv, Au, kt))
= a(s)¢*"(1,1, M(Bu,y, kt)) + b(s)¥P(1,1,1).
We claim that Bv = y. For if Bv # y, then M (Bwv,y,t) < 1.
On the above inequality we get
M? (y,Bv,t) > a(s)¢?P(M(y, Bu, kt), M(y, Bu, kt), M(y, Bv, kt))
+b(s)yP(M?(y, Bv, kt), M*(y, B, kt), M*(y, Bu, kt))
> a(s)M*(y, B, kt) + b(s)M?P(y, Bv, kt) = M??(y, Bv, kt),
a contradiction. Hence Tv = Bv = Au = Su = y. Since (4,.9) is weak
compatible, we get that ASu = SAu, that is Ay = Sy. Since {(B,T) is weak
compatible, we get that TBv = BTw, that is, Ty = By. If Ay # y, then
M(Ay,y,t) < 1. However
M?*(Ay,y,t)
M??(Ay, Bu,t)
a(s)¢* (M (Sy, Tv, kt), M (Ay, Sy, kt), M(Bv, Tv, kt))
+b(s)yP(M?(Sy, Ty, kt), M (Sy, Ay, kt)M (Tv, Bv, kt),
M(Sy, Bv,kt) vV M(Tv, Ay, kt))
as)¢”P (M (Ay,y, kt),1,1) + b(s)pP(M>(Ay, y, kt), 1, M(Ay, y, kt))
> a(s)¢™ (M(Ay,y, kt), M(Ay, y,kt), M(Ay, y, kt))
+b(s)y? (M?(Ay, y, kt), M*(Ay, y, kt), M*(Ay, y, kt))
> a(s)M?P(Ay,y, kt) + b(s)M?P(Ay,y, kt) = M*P(Ay,y, kt)

a contradiction. Thus Ay = y, hence Ay = Sy = y. Similarly we prove that
By =y. For if By # y, then M (By,y,t) < 1, however

M?®*(y,By,t) = M?®(Ay, By,t)
> a(s)¢*P(M(Sy, Ty, kt), M(Ay, Sy, kt), M(By, Ty, kt))
+b(s)P (M?*(Sy, Ty, kt), M (Sy, Ay, kt)M (Ty, By, kt),
M(Sy, By, kt) v M(Ty, Ay, kt))
a(s)¢*? (M (y, By, kt), M (y,y, kt), M (By, By, kt))
+b(s)? (M*(y, By, kt), 1, M (y, By, kt))
a(s)¢*? (M (y, By, kt), M (y, By, kt), M (y, By, kt))
+b(s)y? (M*(y, By, kt), M*(y, By, kt), M*(y, By, kt))
> a(s)M*(y, By, kt) + b(s)M??(y, By, kt) = M?"(y, By, kt),

v

Y
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a contradiction. Therefore, Ay = By = Sy = Ty = y, that is, y is a common
fixed of A, B, S and T. Uniqueness, let = be another common fixed point of
A,B,S and T. That is, z = Az = Bz = Sz = Tz. If M(x,y,t) < 1, then
M%*(y,z,t) = M?»(Ay, Bz,t)
> a(s)¢*(M(Sy, Tz, kt), M(Ay, Sy, kt), M (Bz, Tz, kt))
+b(s)y? (M?(Sy, Tz, kt), M(Sy, Ay, kt)M (T'x, Bz, kt),
M(Sy, Bz, kt) vV M(Tz, Ay, kt))
a(s)$* (M (y, =, kt),1,1)+b(s)YP(M>(y, z, kt), 1, M (y, z, kt))
> a(s)¢™(M(y, , kt), M(y, , kt), M(y, , kt))
+b(s)yP (M?(y, z, kt), M*(y, =, kt), M*(y, z, kt))
> a(s)M*(y,z, kt) + b(s) M?P(y, z, kt) = M*P(y, z, kt),

a contradiction. Therefore, y is the unique common fixed point of self-maps
A/B,Sand T. a

In the following Theorem, function ¢ : [0,1]* — [0,1], is continuous and
increasing in each co-ordinate variable. Also ¢(s, s,s,s) > s for every s € [0, 1).

Theorem 2.3. Let A, B, S and T be self-mappings of a complete fuzzy metric
space (X, M, ), satisfying that
(i) A(X)CT(X), B(X)CS(X) and A(X) or B(X) is a complete subset
of X,
. M(Sxz, Ty, kt), M(Az, Sz, kt),
(i) M(Az, By,t) > ¢ ( M{(By, Ty, kt), M(Az. Ty, kt) v M(By, Sz, kt)
for every z,y in X,k > 1 and ¢ € ®,
(ili) the pairs (A,S) and (B,T) are be weak compatible.

Then A,B,S and T have a unique common fized point in X.

Proof. Let zop € X be an arbitrary point as A(X) C T(X), B(X) C S(X), there
exist 1,22 € X such that Azg = Tz, Bxy = Sza. Inductively, construct
sequence {y,} and {z,} in X such that y2, = Axsp, = TToni1, Yone1 =
Bxopi1 = Szopys, forn=0,1,2,....

Now, we prove {y,} is a Cauchy sequence. Let d,(¢) = M (Y, Ym+1,t),t >
0 we prove {d,,(t)} is increasing w.r.t m. Set, m = 2n, we have

(2.1) dan(2)
= M (Y2n, Y2rn+1,t)
= M(AIQn,BCEQTH_l,t)

P M(Szon, Txont1, kt), M(Azxon,Szan, kt),
M(B:Ezn_H s Tony1, kt), M(A:L’zn, Txonti, k)t) \Y M(Bi[:gn_H, S.’L‘zn, k‘t)

— ¢ (M(y2n—17 Yon, kt)? M(y2n> Yon-1, kt)a
M (y2n+1,Y2n, kt),  M(yon, Yor, kt) V M (y2n11, Yon—1, kt)

(A%
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= ¢(dan_1(kt), don_1(kt), d2n (kt),1)
> ¢(d2n_1 (kt), don_1 (kt), dgn(k‘t), 1).

Since, ¢ is an increasing function we claim that for every n € N, day,(kt) >
dan—1(kt). For if da,,(kt) < dan—1(kt), then in inequality (2.1), we have

don () > ¢(dan(kt), don (kt), dan(kt), don (kt)) > don(Kt).

That is, doy, () > dan(kt), a contradiction. Hence day, (kt) > dan—1(kt) for every
n € N and V¢ > 0. Similarly, we have dant+1(kt) > dan(kt). Thus {d,(t)} is
an increasing sequence in [0, 1]. By inequality (2.1) and d,(t) is an increasing
sequence, we get

don (t) > ¢(dan—1(kt), dan—1(kt), don—-1(kt), don—1(kt)) > don—1(kt).
Similarly, we have dan41(t) > dap, (kt).Thus d,, (t) > d,—1(kt). That is,
M (Yns Ynt1,t) = M(Yn—1,Yn, kt) > --- > M(yo,y1,k"t).

Hence by Lemma 1.11 {y,} is Cauchy and the completeness of X, {y,} con-
verges to y in X. That is,

lim y, =y = lim y2, = lim Azy, = lim Txo, 1
n—o0 n—oo n—oo n—oo
= lm yop41 = lim Bxoyyr = lim Szopio = y.
n—o0 n—od n—oo
As B(X) C S(X), there exist u € X such that Su = y. So, we have
M(Au, Bxoni1,t)

> ¢ M(Su,Tzany1,kt), M (Au, Su, kt),
- M(Btl,'zn_H, Tzon+1, kt), M(Au,Tzon+1, kt) V M(Bzxapt1,Su,kt) |-

If Au # y, by continuous M and ¢, on making n — oo the above inequality,
we get

M(Au,y,t)

v

é M(y,y,kt), M(Au,y,kt),
M(y,y, kt), M(Au,y,kt)V M(y,y,kt)

é M(Au,y, kt), M{Au,y,kt),
M(Au,y,kt), M(Au,y,kt)
> M{Au,y,kt).
That is, M (Au,y,t) > M(Au,y, kt) which is contradiction. Hence
M(Au,y,t) =1,
ie, Au=1y. Thus Au = Su=y.
As A(X) C T(X) there exist v € X, such that Tv = y. So,
M{y,Bv,t) = M(Au,Bu,t)

8 M(Su,Tv,kt), M(Au,Su,kt),
M(Bv,Tv, kt), M(Au,Tv,kt)V M(Bv, Su, kt)

v

Y

_ 1’ 1,
= ¢ M(Buv,y,kt), 1 |’



438 SHABAN SEDGHI GHADIKOLAEE AND NABI SHOBE

We claim that Bv = y. For if Bv # y, then M (Buv,y,t) < 1.
On the above inequality we get

M(y, Bv, kt), M(y, Bu, kt),
M(y,Bv,t) > ¢ ( M(y, Bu,kt), M(y, Bv,kt)
> M(y; B’U, kt)7

a contradiction. Hence Tv = Bv = Au = Su=y. Since (4,9) is weak com-
patible, we get that ASu = SAu, that is Ay = Sy.

Since (B, T) is weak compatible, we get that T Bv = BT v, that is Ty = By.
If Ay # y, then M (Ay,y,t) < 1. However

M(Ay,y,t) = M(Ay, Bv,t)

4 M(Sy,Tv,kt), M(Ay,Sy,kt),
M(Bv,Tv,kt), M(Ay,Tv,kt)V M(Bv, Sy, kt)

d(M(Ay,y, kt), 1,1, M(Ay, y, kt))

# M{(Ay,y,kt), M(Ay,y,kt),
M(Ay,y,kt), M(Ay,y,kt)

M(Ay,y, kt)

vV IV IV

\

a contradiction. Thus Ay = y, hence Ay = Sy = y. Similarly we prove that
By =y. For if By # y, then M (By,y,t) < 1, however

M(y, By, t) M(Ay, By, t)

& M(Sy, Ty, kt), M(Ay,Sy,kt),
M(By, Ty, kt), M(Ay,Ty,kt)Vv M(By, Sy, kt)

#(M(y, By, kt), M (y, By, kt), M(y, By, kt), M (y, By, kt))
M (y, By, kt)

v

VAR

a contradiction. Therefore, Ay = By = Sy = Ty = y, that is, y is a common
fixed of A, B, S and T. Uniqueness, let z be another common fixed point of
A, B,Sand T. That is x = Az = Bx = Sz =Tz. If M(z,y,t) <1, then

M(y,z,t) = M(Ay, Bz,t)
é ( M(Sy, Tz, kt), M(Ay, Sy, kt), >
= M(Bz, Tz, kt), M(Ay, Tz, kt)Vv M(Bz, Sy, kt)
_ ¢( M(y,z,kt), 1, )
- 1, My, z, kt) v M(z,y, kt)
> (M (y,z, kt), M(y,xz, kt), M(y, z, kt), M(y, z, kt))
> My, kt)

a contradiction . Therefore, ¢ is the unique common fixed point of self-maps
A,B,Sand T. O
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