SOME VECTOR IMPLICIT COMPLEMENTARITY PROBLEMS WITH CORRESPONDING VARIATIONAL INEQUALITY PROBLEMS

MEE-KWANG KANG

ABSTRACT. Some existence theorems of solutions of a new class of generalized vector F-implicit complementarity problems with the corresponding generalized vector F-implicit variational inequality problems were established

1. Introduction with preliminaries

After Lemke [22] introduced complementarity problems, there have been many discussions on the problems and the corresponding variational inequality problems [4-8, 10-20, 23-25]. Implicit complementarity problems were originally considered with the dynamic programming approach of stochastic impulse and continuous optimal control [2, 3, 18]. In 1991, Chang and Huang [5] considered the relation between multi-valued implicit complementarity problems and multi-valued implicit variational inequality problems.

In [24], the following scalar F-complementarity problems and the corresponding variational inequality problems were considered, where K is a closed convex cone of a Banach space X with a topological dual X^* , $T: K \to X^*$ a mapping and $F: K \to \mathbb{R}$ a function; Find $x \in K$ such that

$$\langle Tx, x \rangle + F(x) = 0, \ \langle Tx, y \rangle + F(y) > 0, \ \forall y \in K,$$

and find $x \in K$ such that

$$\langle Tx, y - x \rangle + F(y) - F(x) > 0, \quad \forall y \in K.$$

In 2004, Huang and Li [12] studied a new class of scalar F-implicit complementarity problems and the corresponding F-implicit variational inequality problems in Banach spaces. Later, in 2006, Li and Huang [23] extended some results in [12] to the vector case and presented the equivalent relation between

Received March 15, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 49J40.

Key words and phrases. vector F-implicit complementarity problem, vector F-implicit variational inequality, KKM mapping, process.

This paper was supported by Dongeui University in 2005.

F-implicit complementarity problem and F-implicit variational inequality problem. They also obtained some new existence theorems for solutions of their problems by using F-KKM theorem under some suitable assumptions without monotonicity.

In [21], the authors considered the following vector F-implicit complementarity problem (GVF-ICP); Find $x \in K$ such that

$$\langle N(Ax, Bx), q(x) \rangle + F(q(x)) = 0$$

and

$$\langle N(Ax, Bx), g(y) \rangle + F(g(y)) \ge 0 \text{ for } y \in K,$$

and the following corresponding vector F-implicit variational inequality problem (GVF-IVIP); Find $x \in K$ such that

$$\langle N(Ax, Bx), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \ge 0$$
 for $y \in K$,

where K is a nonempty closed convex cone of a Banach space X, (Y,P) is an ordered Banach space induced by a pointed closed convex cone P, L(X,Y) the space of all continuous linear mappings from X into Y and A, $B: K \to L(X,Y)$, $g: K \to K$, $F: K \to Y$ and $N: L(X,Y) \times L(X,Y) \to L(X,Y)$ are mappings.

This paper considers the following generalized multi-valued vector F-implicit complementarity problem (GMVF-ICP); finding $x \in K$ such that for all $y \in K$, there exists $T \in N(Ax, Bx)$ satisfying

$$\langle T, g(x) \rangle + v = 0$$
 for some $v \in F(g(x))$

and

$$\langle T, f(y) \rangle + w \in C(x)$$
, for all $w \in F(f(y))$,

and the following generalized multi-valued vector F-implicit variational inequality problem (GMVF-IVIP); finding $x \in K$ such that for all $y \in K$, there exists $T \in N(Ax, Bx)$ satisfying

$$\langle T, f(y) - g(x) \rangle + w - v \in C(x),$$

for some $v \in F(g(x))$ and for all $w \in F(f(y)),$

where, $f, g: K \to K$ and $A, B: K \to L(X, Y)$ are mappings, $F: K \to 2^Y$ and $N: L(X, Y) \times L(X, Y) \to 2^{L(X, Y)}$ are multi-valued mappings, and $C: K \to 2^Y$ a multi-valued mapping with nonempty convex pointed cone values.

(GMVF-ICP) and (GMVF-IVIP) generalize known problems as follows;

- (1) For the case of single-valued mappings N and F, and the constant closed cone C(x) = C for all $x \in K$, (GMVF-ICP) and (GMVF-IVIP) are, respectively, reduced to (GVF-ICP), and (GVF-IVIP) considered in [21].
- (2) If we define $N(A, B) = \{A\}$, f the identity mapping and F a single-valued mapping in (GMVF-ICP), then we obtain the following vector

F-implicit complementarity problem (VF-ICP) of finding $x \in K$ such that

$$\langle A(x), g(x) \rangle + F(g(x)) = 0$$
 and $\langle A(x), y \rangle + F(y) \in P$, $\forall y \in K$, which was considered and studied in [23] for a constant cone P . The

which was considered and studied in [23] for a constant cone F. The following vector F-implicit variational inequality problem (VF-IVIP) of finding $x \in K$ such that

$$\langle A(x), y - g(x) \rangle + F(y) - F(g(x)) \in P, \quad \forall y \in K,$$

is a particular form of (GMVF-IVIP), considered and studied in [23].

- (3) The following are all special cases of (GMVF-ICP) considered previously.
 - (3-1) Find $x \in K$ such that

$$\langle A(x), g(x) \rangle + F(g(x)) = 0$$
 and $\langle A(x), y \rangle + F(y) \in C(x)$, $\forall y \in K$, which were considered by Huang and Li [12].

(3-2) Find $x \in K$ such that

$$\langle A(x), x \rangle + F(x) = 0$$
 and $\langle A(x), y \rangle + F(y) \in C(x)$, $\forall y \in K$, which was studied by Yin et al. [24].

(3-3) Find $x \in K$ such that

$$\langle A(x), g(x) \rangle = 0$$
 and $\langle A(x), y \rangle \in C(x)$, $\forall y \in K$,

which was studied by Isac [14, 15].

(3-4) Find $x \in K$ such that

$$\langle A(x), x \rangle = 0$$
 and $\langle A(x), y \rangle \in C(x)$, $\forall y \in K$,

which was studied by Chen and Yang [6].

2. Main results

The following KKM mapping is a very useful mapping in nonlinear analysis.

Definition 2.1. Let K be a nonempty convex subset of a topological vector space X. A multi-valued mapping $T:K\to 2^X$ is said to be a KKM mapping if

$$convA \subseteq \bigcup_{x \in A} T(x), \quad \forall A \in \mathcal{F}(K),$$

where conv denotes the convex hull and $\mathcal{F}(K)$ a family of finite subsets of K.

Definition 2.2 ([1]). Let X and Y be normed spaces. A multi-valued mapping $T: X \to 2^Y$ is said to be a process if its graph is a cone.

Note that a multi-valued mapping $T:X\to 2^Y$ is a process if and only if

$$\forall x \in X, \ \forall \lambda > 0, \ \lambda F(x) = F(\lambda x) \text{ and } 0 \in F(0).$$

If a process F is a single-valued mapping then it is said to be positively homogeneous.

The following F-KKM theorem is a useful key in our result.

Lemma 2.1 ([9]). Let K be a nonempty subset of a Hausdorff topological vector space X and $T: K \to 2^X$ be a KKM mapping. Suppose that T(x) is closed for each $x \in K$, and T(y) is compact for some $y \in X$, then $\bigcap_{x \in K} T(x)$ is nonempty.

Throughout this section, K is a nonempty closed convex cone of a Banach space X with a topological dual X^* , Y is also a Banach space and $C: K \to 2^Y$ is a multi-valued mapping with nonempty convex pointed cone values. The following theorem shows that (GMVF-ICP) and (GMVF-IVIP) are equivalent.

Theorem 2.1. (i) If x solves (GMVF-ICP), then it also solves (GMVF-IVIP). (ii) Let $F: K \to 2^Y$ satisfy $2F(x) \subset F(2x)$ for all $x \in K$ and $0 \in F(0)$. If x is a solution of (GMVF-IVIP) with $2g(x) \in f(K)$ and $0 \in f(K)$, then it also solves (GMVF-ICP).

Proof. By the definitions of (GMVF-ICP) and (GMVF-IVIP), (i) easily holds. Now let $x \in K$ solve (GMVF-IVIP), then for all $y \in K$, there exists $T \in N(Ax, Bx)$ such that

(2.1)
$$\langle T, f(y) - g(x) \rangle + w - v \in C(x),$$
 for some $v \in F(g(x))$ and for all $w \in F(f(y))$.

Since $0 \in f(K)$, there exists $y_1 \in K$ such that $f(y_1) = 0$. By substituting w with 0 in (2.1), we obtain that

$$\langle T, -g(x) \rangle + 0 - v \in C(x).$$

In (2.1), since $2v \in 2F(g(x)) \subset F(2g(x)) \subset F(f(K))$, taking $y_2 \in K$ such that $f(y_2) = 2g(x)$ and w = 2v, we obtain that

$$\langle T, g(x) \rangle + 2v - v \in C(x).$$

Then $\langle T, g(x) \rangle + v \in C(x) \cap -C(x)$. Since C(x) is pointed, we have

$$\langle T, g(x) \rangle + v = 0.$$

By adding (2.1) and (2.2), we have

$$\langle T, f(y) \rangle + w \in C(x).$$

Therefore x is a solution of (GMVF-ICP).

Example 2.1. Let $X = Y = \mathbb{R}$, and $K = C(x) = [0, \infty)$, for all $x \in X$. Define a multi-valued mapping $N: L(X,Y) \times L(X,Y) \to 2^{L(X,Y)}$ by $N(s,t) = \{s,t\}$ for each $s, \ t \in L(X,Y)$. Let $f, \ g: K \to K$ be mappings defined by g(x) = x and $f(x) = x^2 + 2$ and $A, B: K \to L(X,Y)$ be defined by $\langle A(x), z \rangle = (x+1)z$ and $\langle B(x), z \rangle = 2z$ for each $z \in X$, for each $x \in K$. Assume that $F: K \to 2^Y$ is defined by

$$F(x) = [-x, x^2]$$
 for each $x \in X$.

Then
$$2F(x) \subset F(2x)$$
 for $x \in X$. Also, for $y \in K$,
 $\langle A(x), f(y) - g(x) \rangle + w - v$
 $= (x+1)(y^2 + 2 - x) + w - v$
 $\geq (x+1)(y^2 + 2 - x) - y^2 - 2 - v$
 $= x(y^2 - x + 1) - v$ for all $w \in F(f(y))$.

The solution set S_{AV} of (GMVF-IVIP) for A is [0,2], but the solution set S_{AC} of (GMVF-ICP) for A is $\{0\}$. To show the existence of $v \in F(g(x))$ such that $\langle A(x), g(x) \rangle + v = 0$, it must be satisfied that $(x+1)x - x \leq 0$. For example, if x = 1,

$$\langle A(1), g(1) \rangle + v = 2 + v > 0$$
 for each $v \in F(g(1)) = [-1, 1]$.

On the other hand,

$$\langle B(x), f(y) - g(x) \rangle + w - v = 2(y^2 + 2 - x) + w - v$$

 $\geq y^2 - 2x + 2 - v \text{ for all } w \in F(f(y)).$

To have a solution of (GMVF-IVIP) for B, it must hold that $y^2-2x+2-(-x) \ge 0$ for each $y \in K$; hence

$$\langle A(x),f(y)\rangle+w\geq 2(y^2+2)-y^2-2=y^2+2\geq 0\quad \text{for all}\quad w\in F(f(y))$$
 and

$$\langle A(x), g(x) \rangle + v = 2x + v.$$

Therefore the solution set S_{BV} of (GMVF-IVIP) for B is [0, 2], while the solution set S_{BC} of (GMVF-ICP) for B is $\{0\}$. Thus the solution set of (GMVF-IVIP) is $S_{AV} \cup S_{BV} = [0, 2]$ and that of (GMVF-ICP) is $S_{AC} \cup S_{BC} = \{0\}$.

In Example 2.1, if we put $f(x) = x^2$ then f is onto and thus Theorem 2.1 holds; in this case, the common solution set for (GMVF-IVIP) is $\{0\}$.

Since every process F satisfies F(2x) = 2F(x) for each $x \in X$ and $0 \in F(0)$, Theorem 2.1 has the following corollary.

Corollary 2.1. Let $F: K \to 2^Y$ be a process. If $0 \in f(K)$ and $2g(K) \subset f(K)$, then (GMVF-IVIP) and (GMVF-ICP) are equivalent.

The mapping $F: K \to 2^Y$ in Example 2.1 is a multi-valued mapping which is not a process but satisfies condition of (ii) in Theorem 2.1.

Corollary 2.2. Let N and F be single-valued mappings and f = g.

- (i) If x solves (GVF-ICP), then it also solves (GVF-IVIP).
- (ii) Let K be a closed convex cone, $F: K \to Y$ positively homogeneous and f onto. If x solves (GVF-IVIP), then it also solves (GVF-ICP).

Corollary 2.3 ([23]). (i) If x solves (VF-ICP), then it also solves (VF-IVIP). (ii) Let K be a closed convex cone and $F: K \to Y$ positively homogeneous. If x solves (VF-IVIP), then it also solves (VF-ICP).

The following theorem improves and extends Theorem 3.2 in [23].

Theorem 2.2. Assume that

- (a) the set $H = \{x \in K : \text{there exists } T \in N(Ax, Bx) \text{ such that } \langle T, f(y) g(x) \rangle + w v \in C(x) \text{ for all } w \in F(f(y)) \text{ and for some } v \in F(g(x)) \} \text{ is closed in } K \text{ for all } y \in K;$
 - (b) there exists a mapping $h: K \times K \to Y$ such that
 - (i) $h(x,x) \in C(x)$ for all $x \in K$;
 - (ii) $\langle T, f(y) g(x) \rangle + w v h(x, y) \in C(x)$ for $x, y \in K$, $T \in N(Ax, Bx)$, $w \in F(f(y))$ and for some $v \in F(g(x))$;
 - (iii) the set $\{y \in K : h(x,y) \notin C(x)\}$ is convex for all $x \in K$;
- (c) there exists a nonempty convex compact subset D of K such that for each $x \in K \setminus D$, there exists $y \in D$ such that

$$\langle T, f(y) - g(x) \rangle + w - v \not\in C(x)$$

for all $T \in N(Ax, Bx)$, for some $w \in F(f(y))$, for all $v \in F(g(x))$. Then, the solution set of (GVF-IVIP) is a nonempty compact subset of K.

Proof. Define

$$G(y) = \{x \in D : \text{there exists } T \in N(Ax, Bx) \text{ such that}$$

$$\langle T, f(y) - g(x) \rangle + w - v \in C(x) \text{ for all } w \in F(f(y))$$

and for some $v \in F(g(x))\}$

for each $y \in K$. Then $G: K \to 2^K$ is a multi-valued mapping. By assumption (a), $G(y) = H \cap D$ is closed in D. We have to show that $\bigcap_{y \in K} G(y) \neq \emptyset$, because

every element of $\bigcap_{y \in K} G(y)$ is a solution of (GMF-IVIP). First we claim that

 $\{G(y): y \in K\}$ has the finite intersection property.

Let $\{y_1, \ldots, y_n\}$ be a finite subset of K and set $E = \overline{\text{conv}}(D \cup \{y_1, \ldots, y_n\})$. Then E is a compact and convex subset of K. Define multi-valued mappings $F_1, F_2 : E \to 2^E$ as follows: for each $y \in E$,

$$F_1(y) = \{x \in E : \text{there exists } T \in N(Ax, Bx) \text{ such that}$$

$$\langle T, f(y) - g(x) \rangle + w - v \in C(x) \text{ for all } w \in F(f(y))$$

and for some $v \in F(g(x))\}$

and

$$F_2(y) = \{x \in E : h(x,y) \in C(x)\}.$$

To show that F_2 is a KKM-mapping, suppose that there exists a finite subset

$$\{u_1,\ldots,u_m\}$$
 of E and $\lambda_i\geq 0$ $(i=1,2,\ldots,m)$ with $\sum_{i=1}^m\lambda_i=1$ such that

$$u = \sum_{i=1}^{m} \lambda_i u_i \not\in \bigcup_{i=1}^{m} F_2(u_i).$$

Since $h(u, u_i) \notin C(u)$ for each i = 1, ..., m and $\{y \in K : h(x, y) \notin C(x)\}$ is convex, it follows that

$$h\left(u,\sum_{i=1}^m\lambda_iu_i
ight)=h(u,u)
ot\in C(u),$$

which is a contradiction to the assumption (i) of (b). Therefore F_2 is a KKM-mapping. From the assumption (ii) of (b) and the fact that C(x) is a cone, we have $F_2(y) \subset F_1(y)$ for each $y \in E$. Hence F_1 is also a KKM-mapping. Since $F_1(y) = H \cap E$ and H is closed in K, $F_1(y)$ is a closed subset of a compact set E and thus $F_1(y)$ is compact. By Lemma 2.1,

$$\bigcap_{y\in E} F_1(y)\neq \emptyset.$$

By assumption (c), each element of $\bigcap_{y\in E} F_1(y)$ can not belong to $K\backslash D$ but to D.

Therefore $\bigcap_{y\in E} F_1(y)\subset G(y_j)$ for $j=1,2,\ldots,n$, that is, $\bigcap_{j=1}^n G(y_j)\neq\emptyset$. Hence $\{G(y):y\in K\}$ is a family of closed subsets of the compact set D, having the finite intersection property. Therefore $\bigcap_{y\in K} G(y)\neq\emptyset$ and it's a compact subset of K. That is, there exists $x\in K$ such that for all $y\in K$ there exists $T\in N(Ax,Bx)$ such that

$$\langle T, f(y) - g(x) \rangle + w - v \in C(x)$$
 for all $w \in F(f(y))$ and for some $v \in F(g(x))$.

Note that a multi-valued mapping $F: K \to 2^Y$ is upper semicontinuous if for any closed set $C \subset Y$, the set $F^-(C) = \{x \in K : F(x) \cap C \neq \emptyset\}$ is closed in K. If $C: K \to 2^Y$ is a multi-valued mapping with closed set values N, F are upper semicontinuous and A, B, g, f are continuous, then condition (a) of Theorem 2.2 holds. Therefore we obtain the following existence result of solution for the (GMVF-IVIP).

Theorem 2.3. Let $N:L(X,Y)\times L(X,Y)\to 2^{L(X,Y)}$ and $F:K\to 2^Y$ be upper semicontinuous multi-valued mappings and C(x) be closed for each $x\in K$. Assume that

- (a) $A, B: K \to L(X,Y)$ and $f, g: K \to K$ are continuous;
- (b) there exists a mapping $h: K \times K \to Y$ such that
 - (i) $h(x,x) \in C(x)$ for all $x \in K$;
- (ii) $\langle T, f(y) g(x) \rangle + w v h(x, y) \in C(x)$, for $x, y \in K$, $T \in N(Ax, Bx)$, for all $w \in F(f(y))$ for some $v \in F(g(x))$;
- (iii) the set $\{y \in K : h(x,y) \notin C(x)\}\$ is convex for all $x \in K$;
- (c) there exists a nonempty convex compact subset D of K such that for each $x \in K \setminus D$, there exists $y \in D$ such that

$$\langle T, f(y) - g(x) \rangle + w - v \not\in C(x)$$

Г

for all $T \in N(Ax, Bx)$, for some $w \in F(f(y))$, for all $v \in F(g(x))$. Then, the solution set of (GVF-IVIP) is a nonempty compact subset of K.

If $N: L(X,Y) \times L(X,Y) \to 2^{L(X,Y)}$ and $F: K \to 2^Y$ are single-valued mappings, f=g and $C: K \to 2^Y$ is a constant mapping, then we have the existence theorem for (GVF-IVIP) as a corollary.

Corollary 2.4 ([21]). Assume that

- (a) five mappings $N: L(X,Y) \times L(X,Y) \rightarrow L(X,Y)$, $g: K \rightarrow K$, A, $B: K \rightarrow L(X,Y)$ and $F: K \rightarrow Y$ are continuous;
 - (b) there exists a mapping $h: K \times K \to Y$ such that
 - (i) $h(x,x) \ge 0$ for all $x \in K$;
 - (ii) $\langle N(Ax, Bx), g(y) g(x) \rangle + F(g(y)) F(g(x)) h(x, y) \ge 0$ for all $x, y \in K$;
 - (iii) the set $\{y \in K : h(x,y) \geq 0\}$ is convex for all $x \in K$;
- (c) there exists a nonempty compact convex subset D of K such that for all $x \in K \setminus D$ there exists $y \in D$ such that

$$\langle N(Ax, Bx), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \geq 0$$

Then (GVF-IVIP) has a solution. Furthermore, the solution set of (GVF-IVIP) is closed.

If $N(A, B) = \{A\}$, f is the identity mapping, F is a single-valued mapping and C is a constant mapping, then we obtain an existence theorem for (VF-IVIP).

Corollary 2.5 ([23]). Let Y be an ordered Banach space induced by a pointed closed convex cone P. Assume that

- (a) $A: K \to L(X,Y), g: K \to K \text{ and } F: K \to Y \text{ are continuous};$
- (b) there exists a mapping $h: K \times K \to Y$ such that
 - (i) $h(x,x) \geq 0$ for all $x \in K$;
- (ii) $\langle A(x), y g(x) \rangle + F(y) F(g(x)) h(x, y) \ge 0$, for all $x, y \in K$;
- (iii) the set $\{y \in K : h(x,y) \geq 0\}$ is convex, for all $x \in K$;
- (c) there exists a nonempty compact, convex subset D of K, such that for all $x \in K \setminus D$, there exists $y \in D$ such that

$$\langle f(x), y - g(x) \rangle + f(y) - F(g(x)) \not \geq 0.$$

Then (VF-IVIP) has a solution. Furthermore, the solution set of (VF-IVIP) is closed.

Theorem 2.4. Let K be convex cone, $F: K \to Y$ satisfy $2F(x) \subset F(2x)$, for all $x \in K$ and $f: K \to K$ be a mapping such that $0 \in f(K)$ and $2g(K) \subset f(K)$. If assumptions of Theorem 2.2 are satisfied, then the solution set of (GVF-ICP) is nonempty and compact.

Proof. The result follows from Theorem 2.1 and Theorem 2.2.

Corollary 2.6. We obtain the same results for (VF-ICP) and (VF-IVIP) considered in [23].

References

- [1] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser Boston (1990).
- [2] A. Bensoussan, Variational inequalities and optimal stopping time problems. D. L. Russel ed.: Calculus of Variations and Control Theory, Academic Press (1976), 219–244.
- [3] I. Capuzzo-Dolcetta and U. Mosco, Implicit complementarity problems and quasivariational inequalities, R. W. Cottle, R. Giannessi and J. L. Lions ed.: Variational Inequalities and Complementarity Problems, Theory and Applications, John Wiley and Sons (1990), 75–87.
- [4] A. Carbone, A note on complementarity problem, Internat. J. Math. Math. Sci. 21 (1998), no. 3, 621-623.
- [5] S. S. Chang and N. J. Huang, Generalized multivalued implicit complementarity problems in Hilbert spaces, Math. Japonica 36(1991), no. 6, 1093-1100.
- [6] G. Y. Chen and X. Q. Yang, The vector complementarity problems and its equivalences with the weak minimal element in ordered spaces, J. Math. Anal. Appl. 153 (1990), 136-158.
- [7] R. W. Cottle and G. B. Danzig, Complementarity pivot theory of mathematical programming, Linear Algebra Appl. 1 (1968), 103-125.
- [8] R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Opti, Th. & Appl. 75 (1992), no. 2, 281-295.
- [9] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
- [10] Y. P. Fang and N. J. Huang, The vector F-complementarity problem with demipseudomonotone mappings in Banach spaces, Appl. Math. Lett. 16 (2003), 1019–1024.
- [11] W. Guo, Implicit complementarity problems in Banach spaces, Northeast. Math. J. 13 (1997) 335-339.
- [12] N. J. Huang and J. Li, F-implicit complementarity problems in Banach spaces, Z. Anal. Anwendungen 23 (2004), 293–302.
- [13] G. Isac, A special variational inequality and the implicit complementarity problems, J. Fac. Sci. Univ. Tokyo 37 (1990), 109-127.
- [14] _____, Complementarity Problems, Springer-Verlag, New York, 1992.
- [15] ______, A generalization of Karamardian's condition in complementarity theory, Nonlinear Analysis Forum 4 (1999), 49–63.
- [16] ______, On the implicit complementarity problem in Hilbert spaces, Bull. Australian Math. Soc. 32 (1985), 251-260.
- [17] ______, Condition $(S)_+^1$, Altman's condition and the scalar asymptotic derivative: applications to complementarity theory, Nonlinear Analysis Forum 5 (2000), 1–13.
- [18] ______, Topological Methods in Complementarity Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
- [19] G. Isac and J. Li, Complementarity problems, Karamardian's condition and a generalization of Harker-Pang condition, Nonlinear Analysis Forum 6 (2001), no. 2, 383–390.
- [20] S. Karamardian, Generalized complementarity problem, J. Optim. Theory Appl. 8 (1971), 161–168.
- [21] B. S. Lee, M. Firdosh Khan, and Salahuddin, Vector F-implicit complementarity problems with corresponding variational inequality problems, Appl. Math. Lett. 20 (2007), 433–438.
- [22] C. E. Lemke, Bimatrix equilibrium points and mathematical programming, Management Sci. 11 (1965), 681–689.

- [23] J. Li and N. J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math. Lett. 19 (2006), 467-471.
- [24] H. Y. Yin, C. X. Xu, and Z. X. Zhang, The complementarity problems and its equivalence with the least element problem, Acta Math. Sinica 44 (2001), 679-686.
- [25] S. Zhang and Y. Shu, Complementarity problems with applications to mathematical programming, Acta Math. Appl. Sinica 15 (1992) 380-388.

DEPARTMENT OF MATHEMATICS DONGEUI UNIVERSITY BUSAN 614-714, KOREA E-mail address: mee@deu.ac.kr