ANOTHER METHOD FOR A KUMMER-TYPE TRANSFORMATION FOR A $_2F_2$ HYPERGEOMETRIC FUNCTION

JUNESANG CHOI AND ARJUN K. RATHIE

ABSTRACT. Very recently, by employing an addition theorem for the confluent hypergeometric function, Paris has obtained a Kummer-type transformation for a $_2F_2(x)$ hypergeometric function with general parameters in the form of a sum of $_2F_2(-x)$ functions. The aim of this note is to derive his result without using the addition theorem.

1. Introduction and results required

We start with a Kummer-type transformation for a $_2F_2(x)$ hypergeometric function with general parameters in the form of a sum of $_2F_2(-x)$ functions due to Paris [1, Eq.(3)]:

$$(1.1) _2F_2\begin{pmatrix} a, & d \\ b, & c \end{vmatrix} x = e^x \sum_{n=0}^{\infty} \frac{(c-d)_n}{(c)_n n!} (-x)^n {}_2F_2\begin{pmatrix} b-a, & d \\ b, & c+n \end{vmatrix} - x ,$$

where $(a)_n = \Gamma(a+n)/\Gamma(a)$ (n=0,1,2,...) is the Pochhammer symbol. Paris [1] also considered several interesting special cases of (1.1). This result (1.1) was established with the help of the integral representation for ${}_2F_2$ [3, Eq.(4.8.3.11)]:

Received May 4, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 33C65; Secondary 33C60, 33C70, 33C05.

Key words and phrases. generalized hypergeometric function, Kummer's first theorem for $_1F_1$, Kummer-type transformation, addition theorem for $_1F_1$.

and

provided $\Re(b) > 0$ and $\Re(a) > 0$, and the addition theorem for the confluent hypergeometric function in the form [2, Eq.(2.3.5)]:

$$(1.4) _1F_1(d; c; x - xt) = e^x \sum_{n=0}^{\infty} \frac{(c-d)_n}{(c)_n n!} (-x)^n {}_1F_1(d; c+n; -xt).$$

Paris [1] remarked that the special case of (1.1) when c = d reduces to the well-known Kummer's first theorem [3]:

$${}_{1}F_{1}(a;b;x) = e^{x} {}_{1}F_{1}(b-a;b;-x).$$

Here we aim at showing that (1.1) can be derived by using (1.5) instead of (1.4).

2. Derivation of (1.1)

Start with the left-hand side of (1.1) and use (1.2), it becomes

$${}_{2}F_{2}\begin{pmatrix}d, & a \\ c, & b \end{pmatrix} x$$

$$= \frac{\Gamma(c)}{\Gamma(d)\Gamma(c-d)} \int_{0}^{1} t^{d-1} (1-t)^{c-d-1} {}_{1}F_{1}(a; b; xt) dt,$$

which can be written as

(2.1)
$$= \frac{\Gamma(c)}{\Gamma(d)\Gamma(c-d)} e^{x} \int_{0}^{1} t^{d-1} (1-t)^{c-d-1} e^{-x} {}_{1}F_{1}(a;b;xt) dt.$$

Using (1.5) in the integrand of the integral in (2.1), we have (2.2)

$${}_{2}F_{2}\begin{pmatrix}d, & a \\ c, & b \mid x\end{pmatrix}$$

$$= \frac{\Gamma(c)}{\Gamma(d)\Gamma(c-d)} e^{x} \int_{0}^{1} t^{d-1} (1-t)^{c-d-1} e^{-x(1-t)} {}_{1}F_{1}(b-a; b; -xt) dt.$$

Now expand $e^{-x(1-t)}$ in (2.2) as the Maclaurin series, after a little simplification, we obtain

$${}_{2}F_{2}\begin{pmatrix} d, & a \\ c, & b \mid x \end{pmatrix}$$

$$= \frac{\Gamma(c)}{\Gamma(d)\,\Gamma(c-d)}\,e^{x}$$

$$\cdot \sum_{r=0}^{\infty} \frac{(-x)^{r}}{r!} \int_{0}^{1} t^{d-1} (1-t)^{c-d+r-1}\,{}_{1}F_{1}\left(b-a\,;\,b\,;\,-xt\right)dt.$$

Substituting 1 - t = u in (2.3) and simplifying, we get

$${}_{2}F_{2}\begin{pmatrix} d, & a \\ c, & b \end{pmatrix} x$$

$$= \frac{\Gamma(c)}{\Gamma(d)\Gamma(c-d)} e^{x}$$

$$\cdot \sum_{r=0}^{\infty} \frac{(-x)^{r}}{r!} \int_{0}^{1} u^{c-d+r-1} (1-u)^{d-1} {}_{1}F_{1} (b-a; b; -x(1-u)) du.$$

Finally, applying (1.3) to the integral part in the last identity, we have

$$_{2}F_{2}$$
 $\begin{pmatrix} d, & a \\ c, & b \end{pmatrix} x = e^{x} \sum_{r=0}^{\infty} \frac{(-x)^{r}}{r!} \frac{(c-d)_{r}}{(c)_{r}} {_{2}F_{2}} \begin{pmatrix} b-a, d \\ b, c+r \end{pmatrix} - x$.

This completes the proof of (1.1).

References

- R. B. Paris, A Kummer-type transformation for a ₂F₂ hypergeometric function, J. Comput. Appl. Math. 173 (2005), 379–382.
- [2] L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, 1960.
- [3] ______, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

JUNESANG CHOI

DEPARTMENT OF MATHEMATICS

DONGGUK UNIVERSITY

Kyongju 780-714, Korea

E-mail address: junesang@mail.dongguk.ac.kr

ARJUN K. RATHIE

DEPARTMENT OF MATHEMATICS

GOVT. P. G. COLLEGE

SUJANGARH, DISTT. CHURU, RAJASTHAN STATE, INDIA

E-mail address: akrathie@rediffmail.com