Commun. Korean Math. Soc. 22 (2007), No. 3, pp. 369-371

ANOTHER METHOD FOR A KUMMER-TYPE
TRANSFORMATION FOR A .F, HYPERGEOMETRIC
FUNCTION

JUNESANG CHOI AND ARJUN K. RATHIE

ABSTRACT. Very recently, by employing an addition theorem for the con-
fluent hypergeometric function, Paris has obtained a Kummer-type trans-
formation for a 9 F» () hypergeometric function with general parameters
in the form of a sum of 2F5 (—z) functions. The aim of this note is to
derive his result without using the addition theorem.

1. Introduction and results required

We start with a Kummer-type transformation for a o F5 (z) hypergeometric

function with general parameters in the form of a sum of 2 F5 (—z) functions
due to Paris [1, Eq.(3)]:

a, d L (c=d) b—a, d
1) SF 2] =en 3 2 (e -
(L) 2B (b, c :E) € nZ::O (c)pn! (=2)"2F2 (b, c-l—n‘ :1:>,
where (a), = I'(a + n)/T(a) (n = 0, 1, 2, ...) is the Pochhammer symbol.
Paris [1] also considered several interesting special cases of (1.1). This result
(1.1) was established with the help of the integral representation for oF» |3,
Eq.(4.8.3.11)]:
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and
a, d
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provided R(b) > 0 and R(a) > 0, and the addition theorem for the confluent
hypergeometric function in the form [2, Eq.(2.3.5)]:
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(1.4) 1Fy(dye; o —at) =e€” Z (—z)"1Fi(d; c+n; —at).

n=0

Paris [1] remarked that the special case of (1.1) when ¢ = d reduces to the
well-known Kummer’s first theorem [3]:

(1.5) 1Fi{a;b;2) =" 1 Fi(b—a; b; —x).

Here we aim at showing that (1.1) can be derived by using (1.5) instead of
(1.4).

2. Derivation of (1.1)
Start with the left-hand side of (1.1) and use (1.2), it becomes
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which can be written as
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Using (1.5) in the integrand of the integral in (2.1), we have
(2.2)
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Now expand e~ *(1-% in (2.2} as the Maclaurin series, after a little simplifi-
cation, we obtain
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(2.3)

r=0
Substituting 1 — ¢ = u in (2.3) and simplifying, we get
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Finally, applying {1.3) to the integral part in the last identity, we have

(8] ) S e, (0 )

This completes the proof of (1.1).
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