A DISTRIBUTION ON \mathbb{Z}_p

JANGHEON OH

ABSTRACT. In this paper we explicitly compute the p-adic order of $\log_p(1-\zeta_{p^n})$.

1. Introduction

The p-adic L functions interpolate the special values of the Dirichlet L-function and provide the analytic side of Iwasawa Theory. These p-adic L-functions can be constructed by Gamma transform of measures on \mathbb{Z}_p (See Sinnott [1]). A distribution on \mathbb{Z}_p with values in \mathbb{C}_p is a finitely additive function on the collection of compact open subsets of \mathbb{Z}_p and a measure on \mathbb{Z}_p is a distribution on \mathbb{Z}_p with bounded values in \mathbb{C}_p . Let a be an integer which is not a multiple of p. If we define $\mu(a+p^n\mathbb{Z}_p)=\log_p(1-\zeta_{p^n}^a)$ and $\mu(p\mathbb{Z}_p)=0$, then, by a simple computation, we see that μ becomes a distribution on \mathbb{Z}_p . In this paper we will prove that the distribution μ is not a measure. In other words, we will show that the p-adic values of the distribution μ are not bounded.

Throughout this paper, p is an odd prime number, ζ_p is a primitive p-th root of unity and ord_p is an order on \mathbb{C}_p such that $\operatorname{ord}_p(p) = 1$.

Theorem 1. Let p > 3 and n be a positive integer. Then we have

$$\operatorname{ord}_p(\log_p(1-\zeta_{p^n})) = \frac{2}{p-1} - n + 1.$$

This holds also for p = 3 when n = 1.

2. Proof of theorems

Proof. First we prove Theorem 1 when n = 1. Assume that p > 3. For i = 2, 4, ..., p - 3, we have the following formula [2]

$$\sum_{a=1}^{p-1} \omega^{p-1-i}(a) \log_p(1-\zeta_p^a) = \frac{-p}{\tau(\omega^i)} L_p(1,\omega^i).$$

Received March 15, 2007.

2000 Mathematics Subject Classification. 11R23.

Key words and phrases. p-adic L-function, p-adic logarithmic function.

Moreover we have

$$\sum_{a=1}^{p-1} \log_p(1 - \zeta_p^{\ a}) = 0.$$

Adding up the above formula, we have

$$\sum_{i=2}^{p-1} (\sum_{a=1}^{p-1} \omega^{p-1-i}(a) \log_p (1-\zeta_p^a) = \sum_{i=2}^{p-3} \frac{-p}{\tau(\omega^i)} L_p(1,\omega^i).$$

Note that the left hand side of the above formula becomes

$$\frac{p-1}{2}\log_p(1-\zeta_p).$$

Hence we have the following formula

$$\log_p(1-\zeta_p) = \frac{-2p}{p-1} \sum_{i=2}^{p-3} \frac{1}{\tau(\omega^i)} L_p(1,\omega^i).$$

Moreover we have

$$\operatorname{ord}_p(\tau(\omega^i)) = \operatorname{ord}_p(\tau(\omega^{-(p-1-i)})) = \frac{p-1-i}{p-1}.$$

Hence we have the following formula

$$\log_p(1-\zeta_p) = u_2(1-\zeta_p)^2 L_p(1,\omega^2) + u_4(1-\zeta_p)^4 L_p(1,\omega^2) + \dots + u_{p-3}(1-\zeta_p)^{p-3} L_p(1,\omega^{p-3}),$$

where u_i is a unit for $i=2,4,\ldots,p-3$. We know that $\operatorname{ord}_p(L_p(1,\omega^i))\geq 0$ for $i=2,4,\ldots,p-3$ and

$$L_p(1,\omega^2) \stackrel{\text{mod } p}{\equiv} L_p(-1,\omega^2) = -(1-p)\frac{B_2}{2} = \frac{1-p}{12}$$

which concludes the proof for p > 3. For p = 3, write $1 - \zeta_3 = \sqrt{3}i(1 + \sqrt{3}\zeta_3 i)$. Then

$$\log_3(1 - \zeta_3) = \log_3(1 + \sqrt{3}\zeta_3 i)$$
$$= \sqrt{3}\zeta_3 i - \frac{(\sqrt{3}\zeta_3 i)^2}{2} + \frac{(\sqrt{3}\zeta_3 i)^3}{3} + \cdots$$

Note that

$$\operatorname{ord}_3(\frac{(\sqrt{3}\zeta_3i)^n}{n}) \ge 2$$

for $n \geq 4$. Hence

$$\operatorname{ord}_{3}(\log_{3}(1-\zeta_{3}))$$

$$= \operatorname{ord}_{3}(\sqrt{3}\zeta_{3}i - \frac{(\sqrt{3}\zeta_{3}i)^{2}}{2} + \frac{(\sqrt{3}\zeta_{3}i)^{3}}{3})$$

$$= \operatorname{ord}_{3}(\sqrt{3}(1-\zeta_{3})(\frac{\zeta_{3}^{2}i}{2})) = 1,$$

which completes the proof for p = 3.

Next we prove Theorem 1 for $n \ge 1$. Now assume that p > 3. First consider the following formula

$$(1 - \zeta_{p^n})^{p^{n-1}} = (1 - \zeta_p) + p\alpha,$$

where $\operatorname{ord}_p(\alpha) \geq 0$. Write $1 - \zeta_p = \pi$. Note that

$$\operatorname{ord}_p(\log_p(1+x)) = \operatorname{ord}_p(x)$$

when $\operatorname{ord}_p(x) > \frac{1}{p-1}$. Hence we have

$$p^{n-1}\log_p(1-\zeta_{p^n}) = \log_p(\pi + \pi^{p-1}\beta)$$

= $\log_p(\pi) + \log_p(1 + \pi^{p-2}\beta) = \pi^2 u_1 + \pi^{p-2}\gamma$,

where $\operatorname{ord}_p(\beta), \operatorname{ord}_p(\gamma) \geq 0, \operatorname{ord}_p(u_1) = 0$, which completes the proof of Theorem 1.

References

- [1] W. Sinnott, On the μ -invariant of the Γ -transform of a rational function, Invent. Math. **75** (1984), no. 9, 273–282.
- [2] L. Washington, Introduction to Cyclotomic Fields, Graduate Text in Math., Vol. 83, Springer-Verlag, 1982.

DEPARTMENT OF APPLIED MATHEMATICS

SEJONG UNIVERSITY

SEOUL 143-747, KOREA

E-mail address: oh@sejong.ac.kr