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POISSON BRACKET DETERMINED BY A COBRACKET

SEI-QwWON OH AND YONG-YEON SHIN

ABSTRACT. Let (g, ) be a Lie bialgebra. Here we give an explicit formula
for the Poisson bracket on a subalgebra of U{g)° induced by the given
cobracket §.

Let G be a connected and simply connected Poisson Lie group. Then its
Lie algebra g becomes a Lie bialgebra with a cobracket § and the universal
enveloping algebra U(g) becomes a co-Possion algebra which is deformed to a
quantized universal enveloping algebra U,(g). Moreover a ‘good’ subalgebra
of the Hopf dual U,(g)° is considered as a quantization of the coordinate ring
O(G) of G. (See [1], [2], [3] and [4].)

The coordinate ring O(G) is a Poisson algebra and almost equal to a ‘good’
subalgebra of the Hopf dual U(g)° of U(g). Hence the Hopf dual U(g)° becomes
a Poisson algebra and there exists a Poisson bracket {-,-} on U(g)°. But we do
not know immediately what {a, b} is for any a,b € U(g)°. In Theorem, we give
an explicit formula for the Poisson bracket on a subalgebra of U(g)° induced
by the given cobracket 4, which is analogous to the Sklyanin bracket in the
coordinate ring O(G). (See [2, 2.2 A].)

Let (g,6) be a Lie bialgebra over a field k, U(g) the universal enveloping al-
gebra of g and A the comultiplication of U(g). Refer to 2, 1.3] for the definition
of Lie bialgebra and note that A : U(g) — U{g) ® U(g) is a homomorphism of
algebra. The cobracket § is extended uniquely to a A-derivation & from U(g)
into U(g) ® U(g). That is,

6:U(g) — U(g) @ Ul(g)

is a k-linear map such that 6|, = 6 and 8(zy) = 6(z)A(y) + A(z)é(y) for all
z,y € U(g).

Let C be a class of finite dimensional left U(g)-modules such that C is closed
under finite direct sums and finite tensor products. For M € C, v € M and
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f € M*, a coordinate function ¢}, € U(g)* is defined by

el (a) = flav), a€Ug).

Note that c%} is an element of the Hopf dual U(g)° since the annihilator of M
has a finite codimension. It is well-known that the vector space A(C) spanned
by all coordinate functions cff M eCve M,f e M*is an associative k-
algebra with structure

M N _ M&N M N _ M®N
Ctw t Couw = €(7.9),(v,w)’ Crulouw = Crogu@uw:

Note that A(C) is a commutative k-algebra since U(g) is cocommutative. This
note is to prove that A(C) is a Poisson algebra with Poisson bracket induced
by the cobracket §. More precisely we prove that the following theorem:

Theorem. The commutative algebra A(C) is a Poisson algebra with Poisson
bracket

(1) {ct e} (@) = (0(2), ¢y ® cgl)
for all z € U(g).
Proof. Let 7 be the flip on U(g) ® U(g), that is,
Ulg)®@U(g) — U(g) ©U(g), z®@y—y®z.

Then 706 = —0 since 7o A = A and 7 0 § = —4. Hence we have immediately
that o ¥ B v u
{Cfm gw}( ) < ( )7Cf,'u ®cg,w> = <706(x)?cg,w ®cf,'u>
= —(8(x), cply @ ) = —{cgun i} (@)
for all z € U(g). Thus we have {cfv7 AR {cg{w,c}‘,{) :

We will prove that (1) satisfies the Leibniz rule. Set 73 = 7 ® 1 and T3 =
1® 7. Since

(et s Chaul (@) = (A® 1) 08(z),cf), ® cgyy ® )

and

(Cfv{cg w? Ch, ot {Cf,m cﬁ,u}cé\,{w)($)
={(1®08) o A(z), e, ®cl, ®ch,)+ (30 (6®1) 0 Alx), e}, ® ), ®cf,)
for z € U(g), it is enough to show that
(2) (A®1)od=(1®8)oA+T30(d®1)cA.
Set ~

i=(A®1)0d, do=(1R0)0A, d3=T230(0Q1)0A.

Observe that A2 = (A® 1) o A = (1® A) o A is a homomorphism of algebra
and §;,5 = 1,2,3, are all A%-derivations. Hence it is enough to show that
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61(a) = (02 + 03)(a) for all a € g since U(g) is generated by g. Setting §(a) =
d(a) = >, a; ® b;, we have that

51(a) = (A®1)03() 2,601Qb+1®a; ®b;
S2(a) = (1®8) 0 Ala =3.1®a8
53(&)—T230(5®1)0A() Za1®1®bi

and thus é1(a) = (62 + 63)(a) for all a € g.

Observe that
{{c%v’cézw}7c£,u}(z) <(5®1)OS( ) Cf,U®ng®Ch u>
{{cﬁw,ch’u},c%v}( z)=(Tg0om30(d®1)o é( 2), cf’v ® cg’w ® cﬁu>
{erwefuh gt (z) = (om0 (6 ®1) 08(2), e, @ e, @ ck )
for z € U(g). Hence (1) satisfies the Jacobi identity if and only if
(3) (6®1)0d+Ti20T30(6®1)0d+T30720(0®1)0d =0.
Set N _
d=@Fo1)es
dy=T;20730(0®1)0d
dz3=T307120(0®1)0d
Hence (3) is true if and only if

for all 2 € U(g). Since 0 is a A-derivation, 7o and 753 are automorphisms and
U(g) is cocommutative, we have A% = 737932 = 753112A2 and

Ge1A (A®1)8
T12723(6 ® 1)A TiaTa3(A ® 1)0
To3T12(d ® 1)A T23712(A ® 1)8
are all A%-derivations. Moreover, for all a,b € U(g),

)+ (3@ 1)Aa))((A @ 1)5(b))
+((A ©1)8(a))((6 ® 1)A(D)) + di1 (a) A%(b)
da(ab) = (T12723A%(a))da(b) + (1127238 @ 1)A a))(T127T23(A ® 1)8(b))
+ (Ti2723 (A ©1)8 ) + da(a) (112723 A% (b))
ds(ab) = (T23m12A%(a))ds (b )(T237i2(A @ 1)3(b))
A®1 ) (

+ (T23712(A ® 1)6{a)) (123712

di(ab) = A%(a)d, (b

)
(6 ® 1)A(
(a))(T12723(8 @ 1) A(b)
) + (123712(0 ® 1)A(a)
8(a))( (6 ® 1)A(b)) + ds(a)(TasT12A%(D)).
Hence

(di + do + d3)(ab) = A*(a)(dy + d2 + d3)(b) + (d1 + dz + d3)(a) A% (b)
(5) + z1(a)y1(b) + z2(a)y2(b) + z3(a)ys(b)

+ y1(a)z1(b) + y2(a)z2(b) + ys(a)z3(b),

\—/\./
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where
=@®1A y=Aens
Ty = T12723(0 ® 1)A Y2 = T12723(A ® 1)0
z3 = Ta3T12(0 @ 1)A y3 = T23T12(A ® 1)6.

Note that every element of U(g) can be written by a k-linear combination of
products z = aj - - - a, of elements a; € g. Set n = £(z). We will use induction
on £(z) to prove (4). If £(z) = 1 then (4) is true since g* is a Lie algebra and
5(z) = 6(z). Suppose that (4) is true for all elements with length less than
n and let £(z) = n. Then z = ab for some a,b such that £(a) = n — 1 and
£(b) = 1. Thus (d; +dz +ds)(a) = 0 and (di +d2 + d3)(b) = 0 by the induction
hypothesis and it is enough to show that

(6) z1(a)y1(b) + z2(a)y2(b) + z3(a)ys(b) =0
and

(7) y1(a)z1(b) + y2(a)z2(b) + ys(a)zs(b) =0
by (5).

Suppose £(a) = 1, £(b) =1 and let

3a)=6(a) =) a1 ®az, (b)=6(b)=) b ®bs.
Then we have
(8) 21(a)A%(d)y1 (b) + z2(a)A%(d)y2(b) + 73(a) A*(d)ys(b) = 0
for all d € U(g) since

z1(a)A%(d)y1 (b) + w2(a) A% (d)y2 (b) + z3(a) A% (d)y3 (D)

=) a®ae)A@)) heleb+) 18b @b)

+ X u®l®an+ Y 106 a)AXd)( b ehel)
Y100 ®w)A (O boh 1+ bhelab)
Y a:®a®1+) a:®18a)A%d)(D_1®b ®by)
Y 0:8100)A%(d)(D 18 8bi+Y hi®bel)

+(
(
(
Ol ae1@a+) a®ae)A*(d)() bheolea)

_|_
+
+
=0

by the skew symmetry, 76 = —3. Hence (6) is true for the case #(a) = 1 and
¢(b) = 1 and for the case £(a) = 0 and £(b) = 1 since A%(1) =1®1® 1 and
5(1) =0.
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Suppose that £(a) > 1, £(b) = 1 and that a = cd for some ¢, d with £(c) = 1.
Then

(@)y1(b) + z2(a)y2(b) + z3(a)ys(b)
= [A%(0)z1(d) + 21(c) A*(d)]y1 (b)
+[A%(c)z2(d) + 22(c) A (d)]ya (b)
+[A%(c)e3(d) + z3(c) A% (d)]ys(b)
= AX(c)[z1(d)y1 (b) + z2(d)y2(b) + 3(d)ys ()]
+ [21(0) A% (d)y1 (b) + 22() A% (d)y2(b) + z3(c) A% (d)ys (b))
=0

by (8) and the induction hypothesis. Therefore (6) is true for all a and b with
arbitrary £(a) and ¢(b) = 1, as claimed. The equation (7) is proved as in
(6). Therefore (1) satisfies the Jacobi identity. It completes the proof of the
theorem. O
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