ON STRONGLY REGULAR NEAR-SUBTRACTION SEMIGROUPS

P. Dheena and G. Satheesh Kumar

ABSTRACT. In this paper we introduce the notion of strongly regular near-subtraction semigroups (right). We have shown that a near-subtraction semigroup X is strongly regular if and only if it is regular and without non zero nilpotent elements. We have also shown that in a strongly regular near-subtraction semigroup X, the following holds: (i) Xa is an ideal for every $a \in X$ (ii) If P is a prime ideal of X, then there exists no proper k-ideal M such that $P \subset M$ (iii) Every ideal I of X fulfills $I = I^2$.

1. Introduction

B. M. Schein [9] considered systems of the form $(\phi; \circ, \setminus)$, where ϕ is a set of functions closed under the composition " \circ " of functions (and hence $(\phi; \circ)$ is a function semigroup) and the set theoretic subtraction "\"(and hence $(\phi; \setminus)$ is a subtraction algebra in the sense of [1]). B. Zelinka [10] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. E. H. Roh, K. H. Kim and J. G. Lee [8] obtained significant results in subtraction semigroups.

From Ring-Theory, Near-ring (right) theory has been developed by Pilz [7], Mason [6], Meldrum [5] and Clay [3]. In this paper we introduce near-subtraction semigroup (right) which is not a subtraction semigroup. Similar to Nearring (right), we have obtained significant results in near-subtraction semigroups (right).

2. Preliminaries

A non empty set X together with a binary operation "-" is said to be a subtraction algebra if it satisfies the following:

- (1) x (y x) = x.
- (2) x (x y) = y (y x).
- (3) (x-y)-z=(x-z)-y, for every $x, y, z \in X$.

Received September 12, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 16Y30.

Key words and phrases. subtraction semigroup, near-subtraction semigroup, regular, strongly regular.

Example 1. Let A be any non empty set. Then $(P(A), \setminus)$ is a subtraction algebra, where "P(A)" denotes the power set of A and " \setminus " denotes the set theoretic subtraction.

Example 2. Let $X = \{0, a, b, 1\}$ in which "-" is defined by

Then (X, -) is a subtraction algebra.

In a subtraction algebra the following holds:

- (1) x 0 = x and 0 x = 0.
- (2) (x-y)-x=0.
- (3) (x-y)-y=x-y.
- (4) (x-y)-(y-x)=x-y, where 0=x-x is an element that does not depend on the choice of $x \in X$.

Following [4], we have the following definition of subtraction semigroup.

Definition 3. A nonempty set X together with two binary operations "-" and "." is said to be a subtraction semigroup if it satisfies the following:

- (1) (X; -) is a subtraction algebra.
- (2) $(X;\cdot)$ is a semigroup.
- (3) x(y-z) = xy xz and (x-y)z = xz yz for every $x, y, z \in X$.

Example 4. Let $X = \{0, a, b, 1\}$ in which "-" and "." are defined as follows:

_	0	a	b	1					b	
0	0	0	0	0	•	0	0	0	0	0
\mathbf{a}	a	0	\mathbf{a}	0		a	0	\mathbf{a}	0	\mathbf{a}
		b				b	0	0	b	b
1	1	b	a	0		1	0	a	b	1

Then $(X, -, \cdot)$ is a subtraction semigroup.

3. Near-subtraction semigroup

Here we introduce the notion of near-subtraction semigroup.

Definition 5. A nonempty set X together with two binary operations "-" and "." is said to be a near-subtraction semigroup (right) if

- (1) (X; -) is a subtraction algebra.
- (2) $(X;\cdot)$ is a semigroup and
- (3) (x-y)z = xz yz, for every $x, y, z \in X$.

Note: It is clear that 0x = 0, for every $x \in X$

Similarly we can define a near-subtraction semigroup (left). Hereafter a near-subtraction semigroup means it is a near-subtraction semigroup (right) only.

Example 6. Let Γ be a subtraction algebra. Then the set $M(\Gamma)$ of all mappings of Γ into Γ is a near-subtraction semigroup under pointwise subtraction and composition of mappings. $M(\Gamma)$ is not a subtraction semigroup.

Example 7. Let $\Gamma = \{0, 1\}$ in which "-" is defined by

$$\begin{array}{c|cccc}
 & - & 0 & 1 \\
\hline
 & 0 & 0 & 0 \\
 & 1 & 1 & 0
\end{array}$$

Then Γ is a subtraction algebra. Now $M(\Gamma) = \{0, a, b, 1\}$, where 0, a, b, 1 are all functions from Γ to Γ . $M(\Gamma)$ is a near-subtraction semigroup under pointwise subtraction and composition and we have

	0								b	
0	0	0	0	0		0	0	0	0	0
a	a	0	1	b	;	\mathbf{a}	a	\mathbf{a}	\mathbf{a}	\mathbf{a}
b	b	0	0	b	1	b	\mathbf{a}	0	1	b
1	1	0	1	0		1	0	a	b	1

Definition 8. A near-subtraction semigroup X is said to be zero-symmetric if x0 = 0 for every $x \in X$.

Example 9. Let Γ be a subtraction algebra. Then $M_0(\Gamma) = \{f : \Gamma \to \Gamma | f(0) = 0\}$ is a zero-symmetric near-subtraction semigroup under pointwise subtraction and composition of mappings.

Example 10. Let $X = \{0, 1\}$ in which "-" and "·" are defined by

Then $(X, -, \cdot)$ is a zero-symmetric near-subtraction semigroup.

Definition 11. A near-subtraction semigroup X is said to have an identity if there exists an element $1 \in X$ such that 1.x = x.1 = x, for every $x \in X$.

Definition 12. A non empty subset S of a subtraction algebra X is said to be a subalgebra of X, if $x - y \in S$, whenever $x, y \in S$.

Definition 13. Let $(X, -, \cdot)$ be a near-subtraction semigroup. A nonempty subset I of X is called

- (1) a left ideal if I is a sub algebra of (X, -) and $xi x(x' i) \in I$ for all $x, x' \in X$ and $i \in I$
- (2) a right ideal if I is a subalgebra of (X, -) and $IX \subseteq I$

(3) an ideal if I is both a left and right ideal.

Note:

- (1) Suppose if X is a subtraction semigroup and I is a left ideal of X, then for $i \in I$ and $x, x' \in X$, we have $xi x(x' i) = xi (xx' xi) = xi \in I$ by Property 1 of subtraction algebra. Thus we have $XI \subseteq I$.
- (2) If X is a zero symmetric near-subtraction semigroup, then for $i \in I$ and $x \in X$, we have $xi x(0-i) = xi 0 = xi \in I$.

Definition 14. An ideal I of X is said to be a k-ideal if $x - y \in I$ and $y \in I$ implies $x \in I$.

Example 15. Consider the following near-subtraction semigroup

_ '	0	1	2	3	4	5			0	1	2	3	4	5
0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
1	1	0	3	4	3	1		1	0	1	4	3	4	0
2	2	5	0	2	5	4		2	0	4	2	0	4	5
3	3	0	3	0	3	3		3	0	3	0	3	0	0
4	4	0	0	4	0	4		4	0	4	4	0	4	0
5	5	5	0	5	5	0		5	0	0	5	0	0	5

Here $\{0, 1, 3, 4\}$ is a k-ideal. $\{0, 3, 4, 5\}$ is an ideal but not a k-ideal, since $2-4=5\in\{0, 3, 4, 5\}$ and $2\notin\{0, 3, 4, 5\}$.

A near-subtraction semigroup X is said to be regular if given $a \in X$, there is $x \in X$ such that axa = a. Following Ring Theory, X is called strongly regular when for each $a \in X$, $a = xa^2$, for some $x \in X$. For any nonempty subsets A and B of X, $AB = \{ab | a \in A, b \in B\}$. An ideal P of X is said to be a prime ideal if for ideals A, B of X, $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. A proper ideal P of X is called completely prime (semicompletely prime) if $ab \in P$ implies either $a \in P$ or $b \in P(a^2 \in P \text{ implies } a \in P)$. For any $x \in X$, $\langle x \rangle$ stands for the principal ideal generated by x, which is the intersection of all ideals of X containing x and $\langle x \rangle_k$ is the principal k-ideal generated by x which is the intersection of all k-ideals of X containing x. If B and C are subsets of X, we denote the set $\{x \in X \mid xC \subseteq B\}$ by (B:C) and if $B=\{0\}$ we write (B:C) by l(C) and $r(C) = \{x \in X \mid Cx = 0\}$. An element $x \in X$ is said to be nilpotent if there exist a positive integer n such that $x^n = 0$. A near-subtraction semigroup X is said to have IFP (insertion of factors property) if for a, b in X if ab = 0implies axb = 0 for all $x \in X$. Unless otherwise stated, throughout this paper X stands for a zero-symmetric near-subtraction semigroup.

Lemma 16. Let X be a near-subtraction semigroup. For any $x, y \in X$, x = y if and only if x - y = 0 and y - x = 0.

Proof. Suppose that
$$x - y = 0$$
 and $y - x = 0$. Then $x = x - 0 = x - (x - y) = y - (y - x) = y - 0 = y$. The converse part is obvious.

Lemma 17. If X is a near-subtraction semigroup, then the following assertions are equivalent:

- (a) X has the IFP.
- (b) For each $x \in X : (0 : x)$ is a k-ideal of X.
- (c) For each subset S of X : (0 : S) is a k-ideal of X.

Proof. (a) \Rightarrow (b) For r_1 , $r_2 \in (0:x)$, $(r_1 - r_2)x = r_1x - r_2x = 0$, showing that $r_1 - r_2 \in (0:x)$. Let $y, y' \in X$ and $i \in (0:x)$. Then (yi - y(y' - i))x = yix - y(y' - i)x = 0. And iyx = 0 by IFP. Thus (0:x) is an ideal of X, for every $x \in X$. Suppose $r_1 - r_2 \in (0:x)$ and $r_2 \in (0:x)$, then $(r_1 - r_2)x = 0$ and $r_2x = 0$. Hence $r_1x - r_2x = 0$ implies $r_1x = 0$. Thus $r_1 \in (0:x)$ showing that (0:x) is a k-ideal of X for every $x \in X$.

- $(b) \Rightarrow (c)$ is obvious.
- $(c) \Rightarrow (a)$ Let $a, b \in X$ such that ab = 0. Then $a \in (0:b)$. Hence by (c), $ax \in (0:b)$ for every $x \in X$. Thus axb = 0, for every $x \in X$.

Note: If X has no non zero nilpotent elements then ab = 0 implies ba = 0 and hence l(S) = r(S) for any subset S of X. In this case we denote the set by A(S).

Lemma 18. If X has no non zero nilpotent elements then for any $0 \neq x \in X$,

- 1) A(x) is a semicompletely prime ideal
- 2) $ab \in A(x)$ implies $ba \in A(x)$
- 3) $x_1 x_2 \cdots x_n \in A(x)$ implies $\langle x_1 \rangle_k \langle x_2 \rangle_k \dots \langle x_n \rangle_k \subseteq A(x)$ for all x_1, x_2, \dots, x_n in X.

Proof. 1) Now ab = 0 implies ba = 0 since $(ba)^2 = b(ab)a$. Again for any x in X, $(axb)^2 = ax(ba)xb = 0$ as ba = 0. Hence axb = 0. Thus X has IFP. By Lemma 17, A(x) is an ideal of X. Suppose $a^2 \in A(x)$. Then 0 = a(ax) = (ax)a so that $(ax)^2 = 0$ and thus ax = 0. Hence A(x) is a semicompletely prime ideal.

- 2) Suppose $ab \in A(x)$. Then $(ba)^2 = b(ab)a \in A(x)$ and hence $ba \in A(x)$.
- 3) Let $x_1 \cdots x_n \in A(x)$. It can be easily verified that (A(x):S) is a k-ideal for any subset S of X. Since $x_1 \in (A(x):x_2x_3\cdots x_n)$ we have $\langle x_1\rangle_k \subseteq (A(x):x_2x_3\cdots x_n)$ so that $\langle x_1\rangle_k x_2x_3\cdots x_n\subseteq A(x)$. By the property (2), we have $x_2\cdots x_n\langle x_1\rangle_k\subseteq A(x)$. Now $x_2\in (A(x):x_3\cdots x_n\langle x_1\rangle_k)$ so that $\langle x_2\rangle_k\subseteq (A(x):x_3\cdots x_n\langle x_1\rangle_k)$ and hence $\langle x_2\rangle_k x_3\cdots x_n\langle x_1\rangle_k\subseteq A(x)$. Thus $x_3\cdots x_n\langle x_1\rangle_k\langle x_2\rangle_k\subseteq A(x)$. Continuing the process we arrive at (3).

Lemma 19. Let X be a subtraction semigroup with identity. Then for any two ideals A and P, $(A \cup XPX) = \{x \in X | x - a = 0 \text{ for some } a \in A \text{ or } x - r_1pr_2 = 0 \text{ for some } r_1, r_2 \in X \text{ and for some } p \in P\}$ is an ideal of X containing both A and P.

Proof. Let $x, y \in (A \cup XPX)$. Then $x-a_1 = 0$ for some $a_1 \in A$ or $x-r_1pr_2 = 0$, for some $r_1, r_2 \in X$ and for some $p \in P$ and $y-a_2 = 0$ for some $a_2 \in A$ or $y-r_3qr_4 = 0$, for some $r_3, r_4 \in X$ and for some $q \in P$. Suppose $x-a_1 = 0$ and $y-a_2 = 0$. Then $(x-y)-a_1 = (x-a_1)-y = 0-y = 0$ and hence $x-y \in (A \cup XPX)$. Similarly for other cases we can easily verify that $x-y \in (A \cup XPX)$. Let $i \in (A \cup XPX)$. Then i-a=0 for some $a \in A$ or $i-r_1sr_2 = 0$,

for some $r_1, r_2 \in X$ and for some $s \in P$. For $r \in X$, we have ir - ar = 0 or $ir - r_1sr_2r = 0$. Since A is an ideal, $ar \in A$ and hence $ir \in (A \cup XPX)$. Again for $r, r' \in X$, we have (ri - r(r' - i)) - ra = (ri - ra) - r(r' - i) = 0 or $(ri - r(r' - i)) - rr_1sr_2 = (ri - rr_1sr_2) = 0$ showing that $ri - r(r' - i) \in (A \cup XPX)$. Clearly $A \subseteq (A \cup XPX)$ and $P \subseteq (A \cup XPX)$. Hence $(A \cup XPX)$ is an ideal containing both A and A.

Lemma 20. Let X be a near-subtraction semigroup with identity. Then for any two k- ideals A and P, $(A \cup XPX) = \{x \in X : x - a = 0 \text{ for some } a \in A \text{ or } x - r_1pr_2 = 0 \text{ for some } r_1, r_2 \in X \text{ and for some } p \in P\}$ is an ideal of X containing both A and P.

Proof. Clearly $A \subseteq (A \cup XPX)$ and $P \subseteq (A \cup XPX)$. Let $y_1, y_2 \in (A \cup XPX)$. Then $y_1 - a_1 = 0$ for some $a_1 \in A$ or $y_1 - r_1p_1r_2 = 0$ for some $r_1, r_2 \in X$ and for some $p_1 \in P$ and $y_2 - a_2 = 0$ for some $a_2 \in A$ or $y_2 - r_3p_2r_4 = 0$ and for some $r_3, r_4 \in X$ and for some $p_2 \in P$. Suppose $y_1 - a_1 = 0$ for some $a_1 \in A$ and $y_2 - a_2 = 0$ for some $a_2 \in A$. Then $(y_1 - y_2) - a_1 = (y_1 - a_1) - y_2 = 0$. Similarly for other cases we can easily verify that $y_1 - y_2 \in (A \cup XPX)$. Let $i \in (A \cup XPX)$. Then i - a = 0 for some $a \in A$ or $i - r_5pr_6 = 0$ for some $r_5, r_6 \in X$ and for some $p \in P$. Since A and P are k-ideals, $i \in A$ or P. Hence $ir \in A$ or P for every $ir \in X$. Thus $ir \in (A \cup XPX)$ for every $ir \in X$. Similarly $ir \in X$ or $ir \in X$ for $ir \in X$ or $ir \in X$. Thus $ir \in X$ and $ir \in X$ and $ir \in X$ is an ideal containing both $ir \in X$ and $ir \in X$.

Note: In Lemma 20, $(A \cup XPX)$ coincides with $A \cup P$.

Theorem 21. Let X be a near-subtraction semigroup with identity having no non zero nilpotent elements in which every ideal is a k-ideal. For any $x \neq 0$ in X, if P is a minimal prime ideal containing A(x) then P is completely prime.

Proof. Let M be the multiplicative subsemigroup of X generated by $X \setminus P$. We claim that $A(x) \cap M = \phi$. If not choose an element y in $A(x) \cap M$. Since $y \in M$ there exists x_1, x_2, \ldots, x_n in $X \setminus P$ such that $y = x_1 x_2 \cdots x_n \in A(x)$. By Lemma 18, we have $\langle x_1 \rangle_k \langle x_2 \rangle_k \cdots \langle x_n \rangle_k \subseteq A(x) \subseteq P$. Thus $\langle x_i \rangle_k \subseteq P$ for some i. Hence $x_i \in P$ which contradicts our assumption. Let $K = \{J | J \text{ is a ideal of } X \text{ such that } A(x) \subseteq J \text{ and } J \cap M = \phi\}$. K is non empty as $A(x) \in K$. By Zorns lemma, K contains a maximal element say Q. Hence $Q \subseteq X \setminus M$. Now we show that Q is prime. Otherwise there exists ideals A and B such that $AB \subseteq Q$, $A \not\subseteq Q$ and $B \not\subseteq Q$. Consider the ideals $(Q \cup XAX)$ and $(Q \cup XBX)$. Since Q is maximal, we have $(Q \cup XAX) \cap M \neq \phi$ and $(Q \cup XBX) \cap M \neq \phi$. Let $P \in (Q \cup XAX) \cap M$ and $P \in (Q \cup XAX) \cap M$. Then $P \in M$. Since $P \in (Q \cup XAX)$ we have $P \cap P_1 = 0$ for some $P \cap P_2 = 0$ for some $P \cap P_3 = 0$ for some $P \cap P_4 = 0$ for

Now $A(x) \subseteq Q \subseteq X \setminus M \subseteq P$. By the minimality of P, we have $Q = X \setminus M = P$. Since M is a multiplicative semigroup, P is a completely prime ideal. \square

Remark 22. The above theorem fails if X is not zero-symmetric. Consider the near-subtraction semigroup in Example 7, where X is not zero-symmetric and every ideal is a k-ideal. Here 0 is the minimal prime ideal, but it is not completely prime as ba = 0.

Lemma 23. Let X be a near-subtraction semigroup without nonzero nilpotent elements. For any a, b in X if e is an idempotent in X then abe = aeb.

Proof. Clearly X has IFP and xy = 0 implies yx = 0 for every x, y in X. Let e be an idempotent in X. For every a, b in X, since (a - ae)e = 0 we have (a - ae)be = 0 so that abe - aebe = 0. And (ae - a)e = 0, implies aebe - abe = 0. Hence abe = aebe, by Lemma 16. Since (eb - ebe)e = 0, we have eb(eb - ebe) = 0 and ebe(eb - ebe) = 0. So that $(eb - ebe)^2 = 0$. Hence eb - ebe = 0. Similarly ebe - eb = 0. Thus eb = ebe and hence abe = aeb.

Theorem 24. A near-subtraction semigroup X is strongly regular if and only if it is regular and without nonzero nilpotent elements.

Proof. Let X be strongly regular. Suppose $a \in X$ such that $a^2 = 0$. Since X is strongly regular there exists some $x \in X$ such that $a = xa^2 = 0$. Thus $a^2 = 0$ implies a = 0 for every a in X. Hence X is without nonzero nilpotent elements. Now let us show that X is regular. Let $a \in X$. Then $a = xa^2$, for some $x \in X$. Hence (a - axa)a = 0. Since X is without nonzero nilpotent elements, X has IFP and ab = 0 implies ba = 0. So a(a - axa) = 0 and axa(a - axa) = 0, so that $(a - axa)^2 = 0$ and hence (a - axa) = 0. Thus a - axa = 0. Similarly we have (axa - a) = 0 and hence a = axa, by Lemma 16.

Conversely, let X be a regular near-subtraction semigroup without nonzero nilpotent elements. Let $a \in X$. Since X is regular a = aya, for some $y \in X$. Since ya is an idempotent, by Lemma 23, $a = aya = ayaya = ayyaa = ay^2a^2 = xa^2$, where $x = ay^2$. Thus X is strongly regular.

Theorem 25. Let X be a strongly regular near-subtraction semigroup. Then

- (a) Xa is an ideal for all $a \in X$.
- (b) For every prime ideal P of X there exists no proper k-ideal M such that $P \subset M$.
 - (c) Every ideal I of X fulfills $I = I^2$.

Proof. (a) It is obvious that X has no nonzero nilpotent elements so that ab=0 implies ba=0 and X has IFP. Let $a(\neq 0) \in X$ such that $a=xa^2$ for some $x \in X$. Then (a-axa)a=0. Hence a(a-axa)=0 and axa(a-axa)=0, so that $(a-axa)^2=0$. Thus a-axa=0. Similarly axa-a=0. Hence a=axa. Let xa=e. Then e is an idempotent and Xa=Xe. Denoting the set $\{n-ne|n\in X\}$ by S we claim that A(S)=Xe. Since (n-ne)e=0 for any $n\in X$ using IFP (n-ne)Xe=0. Hence $Xe\subseteq A(S)$. Suppose $y\in A(S)$.

Since X is strongly regular there exists some $z \in X$ such that $y = zy^2$. Now (zy - zye)y = 0. Thus y - ye = 0. Also ((ye - y) - (ye - y)e)y = 0, so that (ye - y)y = 0. Then y(ye - y) = 0 and ye(ye - y) = 0. Now $(ye - y)^2 = 0$ and hence ye - y = 0. Thus $y = ye \in Xe$ and it follows that Xa = Xe = A(S). Since A(S) is an ideal, Xa is an ideal.

- (b) Let P be a prime ideal and suppose $P \subset M$ where M is a proper k-ideal. Let $a \in M \setminus P$. Now $a = xa^2$ for some $x \in X$. For any $n \in X$, $na = nxa^2$. Hence (n nxa)a = 0. Since X has IFP, X(n nxa)Xa = 0. Thus $Xa \subseteq P$ or $X(n nxa) \subseteq P$. Suppose $Xa \subseteq P$. Since $a = xa^2 \in Xa$, we have $a \in P$ a contradiction. Suppose $X(n nxa) \subseteq P$. Then $(n nxa) \in P \subset M$. Since $a \in M$ and M is a k-ideal, $n \in M$. Thus M = X a contradiction.
 - (c) The proof is obvious.

References

- [1] J. C. Abbott, Sets. Lattices and Boolean Algebras, Allyn and Bacon, Boston, 1969.
- [2] J. C. Beidleman, A note on Regular near-rings, J. Indian Math. Soc. 33 (1969), 207-210.
- [3] J. R. Clay, The near-rings on groups of low order, Math. Z. 104 (1968), 364-371.
- [4] K. H. Kim, On Subtraction Semigroups, Scientiae Mathematicae Japonicae 62 (2005), no. 2, 273-280.
- [5] Meldrum, Varieties and d.g. near-rings, Proc. Edinburgh Math. Soc. (series 1) 17 (1971), 271-274.
- [6] G. Mason, Strongly regular near-rings, Proc. Edinburgh Math. Soc. 23 (1980), 27-35.
- [7] G. Pilz, Near-rings, North-Holland, Amsterdam, 1983.
- [8] E. H. Roh, K. H. Kim, and Jong Geol Lee, On Prime and Semiprime ideals in Subtraction Semigroups, Scientiae Mathematicae Japonicae 61 (2005), no. 2, 259–266.
- [9] B. M. Schein, Difference Semigroups, Communications in algebra 20 (1992), 2153-2169.
- [10] B. Zelinka, Subtraction Semigroups, Math. Bohemica 120 (1995), 445-447.

P. DHEENA

DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAINAGAR-608 002, INDIA E-mail address: dheenap@yahoo.com

G. SATHEESH KUMAR
DEPARTMENT OF MATHEMATICS
ANNAMALAI UNIVERSITY
ANNAMALAINAGAR-608 002, INDIA
E-mail address: gskumarau@gmail.com