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ON STRONGLY REGULAR NEAR-SUBTRACTION
SEMIGROUPS

P. DHEENA AND G. SATHEESH KUMAR

ABSTRACT. In this paper we introduce the notion of strongly regular near-
subtraction semigroups (right). We have shown that a near-subtraction
semigroup X is strongly regular if and only if it is regular and without non
zero nilpotent elements. We have also shown that in a strongly regular
near-subtraction semigroup X, the following holds: (i) Xa is an ideal for
every a € X (ii) If P is a prime ideal of X, then there exists no proper
k-ideal M such that P C M (iii) Every ideal T of X fulfills 7 = I2.

1. Introduction

B. M. Schein [9] considered systems of the form (¢; 0,\), where ¢ is a set of
functions closed under the composition “ o ” of functions (and hence {¢;0) is
a function semigroup) and the set theoretic subtraction “\”{and hence (¢;\)
is a subtraction algebra in the sense of [1]). B. Zelinka [10] discussed a prob-
lem proposed by B. M. Schein concerning the structure of multiplication in
a subtraction semigroup. E. H. Roh, K. H. Kim and J. G. Lee [8] obtained
significant results in subtraction semigroups.

From Ring-Theory, Near-ring (right) theory has been developed by Pilz [7],
Mason [6], Meldrum [5] and Clay [3]. In this paper we introduce near-subtrac-
tion semigroup (right) which is not a subtraction semigroup. Similar to Near-
ring (right), we have obtained significant results in near-subtraction semigroups
(right).

2. Preliminaries

1] »

A non empty set X together with a binary operation “ — 7 is said to be a
subtraction algebra if it satisfies the following:
() z-(y—=) ==
2 z-(z-y)=y—(y—2).
B)(z—y)—z={(x—2)—y, foreveryz, y, z€ X.
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Example 1. Let A be any non empty set. Then (P(A),\) is a subtraction
algebra, where “P(A)” denotes the power set of A and “\” denotes the set
theoretic subtraction.

Example 2. Let X = {0, a, b, 1} in which “—" is defined by
- | 0 a b 1
0|0 0 0 O
ala 0 a O
b|b b 0 0
11 b a 0

Then (X, —) is a subtraction algebra.

In a subtraction algebra the following holds:
(1) z—0=zand0—z=0.

(2) (z-y)—z=0.
@) (z-y)-y=z-y.
(4) (z—y)— (y—z) =z —y, where 0 = 2 — z is an element that does not

depend on the choice of z € X.
Following [4], we have the following definition of subtraction semigroup.

43 R

Definition 3. A nonempty set X together with two binary operations “ —
and “.” is said to be a subtraction semigroup if it satisfies the following:

(1) (X;—) is a subtraction algebra.

(2) (X;-) is a semigroup.

3) z(ly—2z)=zy—zzand (x —y)z=zxz—yzforevery z, y, z€ X.

Example 4. Let X = {0, a, b, 1} in which “—” and “.” are defined as follows:

- | 0 a b 1 . | 0 a b 1

0(0 0 0 O 0(0 0 0 O

ala 0 a O al0 a 0 a

bbb 0 0 b{0O 0 b b

1({1 b a 0 1{0 a b 1
Then (X, —, ") is a subtraction semigroup.

3. Near-subtraction semigroup

Here we introduce the notion of near-subtraction semigroup.

w_»

Definition 5. A nonempty set X together with two binary operations
and “.” is said to be a near-subtraction semigroup (right) if

(1) (X;—) is a subtraction algebra.

(2) (X -) is a semigroup and

3) (x —y)z =zz—yz, forevery z, y, z € X.
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Note: It is clear that 0z = 0, for every x € X

Similarly we can define a near-subtraction semigroup (left). Hereafter a
near-subtraction semigroup means it is a near-subtraction semigroup (right)
only.

Example 6. Let I' be a subtraction algebra. Then the set M(I') of all map-
pings of I' into I is a near-subtraction semigroup under pointwise subtraction
and composition of mappings. M(I") is not a subtraction semigroup.

Example 7. Let I' = {0,1} in which “— " is defined by
-10 1
0(0 O
11 0

Then I' is a subtraction algebra. Now M(T") = {0, a, b, 1}, where 0, a, b,
1 are all functions from I to T'. M(T") is a near-subtraction semigroup under
pointwise subtraction and composition and we have

—]0 a b 1 .]0 a b 1
010 O 0 0]0 0 0 O
ala 0 1 b ala a a a
bl(b 0 0 b bla 0 1 b
11 0 1 0 110 a b 1

Definition 8. A near-subtraction semigroup X is said to be zero-symmetric
if z0 = 0 for every = € X.

Example 9. Let I be a subtraction algebra. Then My(I") = {f:T' - T'|f(0) =
0} is a zero-symmetric near-subtraction semigroup under pointwise subtraction
and composition of mappings.

Example 10. Let X = {0, 1} in which “—" and “.” are defined by

-0 1 .10 1
0(0 0O 010 0
111 0 110 1

Then (X, —, ) is a zero-symmetric near-subtraction semigroup.

Definition 11. A near-subtraction semigroup X is said to have an identity if
there exists an element 1 € X such that 1l.x = 2.1 = z, for every « € X.

Definition 12. A non empty subset S of a subtraction algebra X is said to
be a subalgebra of X, if x —y € S, whenever z,y € S.

Definition 13. Let (X, —,-) be a near-subtraction semigroup. A nonempty
subset I of X is called
(1) aleft ideal if I is a sub algebra of (X, —) and i — z(z —i) € I for all
x, r €eXandiel
(2) aright ideal if I is a subalgebra of (X, —) and IX C I



326 P. DHEENA AND G. SATHEESH KUMAR

(3) an ideal if I is both a left and right ideal.

Note:
(1) Suppose if X is a subtraction semigroup and I is a left ideal of X, then
fori € Iand z, ' € X, we have zi—z(z' —i) = xi—(za' —xi) =xi €
by Property 1 of subtraction algebra. Thus we have X1 C I.
(2) If X is a zero symmetric near-subtraction semigroup, then for ¢ € I
and z € X, we have zi — (0 —i) =i —0=zi € I.
Definition 14. An ideal I of X is said to be a k-idealif x —y €T andy €I
implies = € I.

Example 15. Consider the following near-subtraction semigroup

-0 1 2 3 4 5 101 2 3 4 5
0(0 0 0 0 OO 010 0 00 00
1110 3 4 3 1 110 1 4 3 40
212 5 0 2 5 4 2|0 4 2 0 4 5
313 0 3 0 3 3 310 3 03 0 0
414 0 0 4 0 4 410 4 4 0 4 0
515 5 0 5 5 0 50 0 5 0 0 3

Here {0, 1, 3, 4} is a k-ideal. {0, 3, 4, 5} is an ideal but not a k-ideal,
since2—-4=5€{0, 3, 4, 5} and 2 ¢ {0, 3, 4, 5}.

A near-subtraction semigroup X is said to be regular if given a € X, there is
z € X such that axa = a. Following Ring Theory, X is called strongly regular
when for each a € X, a = za?, for some 2 € X. For any nonempty subsets A
and B of X, AB = {abla € A, b € B}. An ideal P of X is said to be a prime
ideal if for ideals A, B of X, AB C P implies A C P or B C P. A proper ideal
P of X is called completelyprime (semicompletely prime) if ab € P implies
either a € P or b € P(a? € P implies a € P). For any z € X, (z) stands
for the principal ideal generated by z, which is the intersection of all ideals of
X containing z and (z)y is the principal k-ideal generated by z which is the
intersection of all k-ideals of X containing z. If B and C are subsets of X, we
denote the set {z € X|zC C B} by (B : C) and if B = {0} we write (B : C) by
I{(C) and r(C) = {z € X|Cx = 0}. An element z € X is said to be nilpotent if
there exist a positive integer n such that 2™ = 0. A near-subtraction semigroup
X is said to have IFP (insertion of factors property) if for a, b in X if ab=0
implies azb = 0 for all z € X. Unless otherwise stated, throughout this paper
X stands for a zero-symmetric near-subtraction semigroup.

Lemma 16. Let X be a near-subtraction semigroup. For anyz, ye X,z =1y
ifand only if ct —y=0andy —z =0.

Proof. Suppose that z —y=0andy—z=0.Thenz=z-0=z—(z—y) =
y—{y —z) =y — 0 =y. The converse part is obvious. O

Lemma 17. If X is a near-subtraction semigroup, then the following assertions
are equivalent:
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(a) X has the IFP.
(b) For each z € X : (0: z) is a k-ideal of X.
(¢) For each subset S of X : (0:S) is a k-ideal of X.

Proof. (a) = (b) For 1, 2 € (0 : z), (r1 — r2)z = riz — r2z = 0, showing
that 7y —rp € (0:z). Lety, y € X and i € (0: z). Then (yi —y(y — i)z =
yiz — y(y — i)z = 0. And iyz = 0 by IFP. Thus (0 : z) is an ideal of X, for
every z € X. Suppose r1 — 72 € (0: z) and r2 € (0 : z), then (r, — o)z =0
and rox = 0. Hence riz — rox = 0 implies 712 = 0. Thus 71 € (0 : z) showing
that (0: z) is a k-ideal of X for every z € X.

(b) = (c) is obvious.

(¢) = (a) Let a, b € X such that ab = 0. Then a € (0 : b). Hence by (c),
az € (0 : b) for every z € X. Thus azb = 0, for every z € X. d

Note: If X has no non zero nilpotent elements then ab = 0 implies ba = 0
and hence I(S) = r(S) for any subset S of X. In this case we denote the set by
A(S).

Lemma 18. If X has no non zero nilpotent elements then for any 0 # z € X,
1) A(x) is a semicompletely prime ideal
2) ab € A(z) implies ba € A(x)
3) x1xy - xn € Az) implies (z1 )k (T2)k - .- (Tn)k C A(z) for all zq,72,. ..,
T, n X.

Proof. 1) Now ab = 0 implies ba = 0 since (ba)? = b(ab)a. Again for any =
in X, (azb)? = azx(ba)zb = 0 as ba = 0. Hence azb = 0. Thus X has IFP. By
Lemma 17, A(z) is an ideal of X. Suppose a? € A(z). Then 0 = a(az) = (ax)a
so that (az)? = 0 and thus az = 0. Hence A(x) is a semicompletely prime ideal.
2) Suppose ab € A(z). Then (ba)? = b(ab)a € A(x) and hence ba € A(z).
3) Let z1 -z, € A(z). It can be easily verified that (A(z) : S) is a k-ideal
for any subset S of X. Since z; € (A(x) : 223 - - x,) we have (z1)r C (A(z) :
To3 -« Ty) so that (z1)rxezs-- -z, C A(z). By the property (2), we have
To- - Tn(T1)r C A(z). Now z2 € (A(x) : 23 Tn(z1)k) S0 that (zo)r C (A(z) :
T3 Tn(T1)k) and hence (z2)kxs - - o (xl)k C A(z). Thus z3 - - - Tn{Z1 )k (@2)k
C A(z). Continuing the process we arrive at (3). O

Lemma 19. Let X be a subtraction semigroup with identity. Then for any
two ideals A and P, (AU XPX) = {z € X|z—a = 0 for somea € A or
z —ripry = 0 for some r1, ro € X and for some p € P} is an ideal of X
containing both A and P.

Proof. Letxz, y € (AUXPX). Then z—a; = 0 forsomea; € Aorz—rypry =0,
for some 1,72 € X and for some p € P and y — az = 0 for some ay € A or
y — ragrq = 0, for some r3,74 € X and for some g € P. Suppose z —a; =0
and y —az = 0. Then (z—y) —a; = (z—a1) —y = 0—y = 0 and hence
z—y € (AUXPX). Similarly for other cases we can easily verify that z —y ¢
(AUXPX).Leti € (AUXPX). Theni—a = 0forsomea € Aori—rysry =0,
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for some 71, ro € X and for some s € P. For r € X, we have ir —ar = 0 or
ir — r1sror = 0. Since A is an ideal, ar € A and hence ir € (AU XPX).
Again for 7" € X, we have (ri —r(r' —i)) —ra = (ri —ra) —r(r' —i) =0
or (ri — r(r' — 1)) — rrisry = (ri — rrisre) = 0 showing that ri — r(r' — @) €
(AUXPX). Clearly A C (AUXPX) and P C (AUXPX). Hence (AUXPX)
is an ideal containning both A and P. O

Lemma 20. Let X be a near-subtraction semigroup with identity. Then for
any two k- ideals A and P, (AUXPX)={z € X :2—a=0 for someac A
or x —r1pro = 0 for some ry, ro € X and for some p € P} is an ideal of X
containning both A and P.

Proof. Clearly A C (AUXPX) and P C (AUXPX). Let y1, y2 € (AUXPX).
Then 3, — a1 =0 for some a; € A or y1 — r1p1r2 = 0 for some r1, ro € X and
for some p; € P and y2 — a2 = 0 for some a2 € A or yy — r3pery = 0 and for
some 73,74 € X and for some ps € P. Suppose y; —a; = 0 for some a1 € A
and y» — az = 0 for some as € A. Then (y1 —y2) —a1 = (y1 —a1) —y2 = 0.
Similarly for other cases we can easily verify that y; —y2 € (AU XPX). Let
1€ (AUXPX). Then i —a = 0 for some a € A or i — rsprs = 0 for some
r5, 76 € X and for some p € P. Since A and P are k-ideals, i € A or P. Hence
ir € A or P for every r € X. Thus ir € (AU XPX) for every r € X. Similarly
zi —z(z' —i) € A or P for every z, € X. Thus (AU XPX) is an ideal
containning both A and P. O

Note: In Lemma 20, (AU X PX) coincides with AU P.

Theorem 21. Let X be a near-subtraction semigroup with identity having
no non zero nilpotent elements in which every ideal is a k-ideal. For any
z(# 0) in X, if P is a minimal prime ideal containing A(x) then P is completely
prime.

Proof. Let M be the multiplicative subsemigroup of X generated by X\P.
We claim that A(z) N M = ¢. If not choose an element y in A(z) N M. Since
y € M there exists 21, %2, ..., Ty, in X\ P such that y = z122 - - - &, € A(z). By
Lemma 18, we have (z1)x(z2)r - - (zn)r C A(z) C P. Thus (z;)r C P for some
1. Hence z; € P which contradicts our assumption. Let K = {J]J is a ideal
of X such that A(z) C J and JN M = ¢}. K is non empty as A(z) € K. By
Zorns lemma, K contains a maximal element say Q. Hence @ C X\M. Now
we show that @ is prime. Otherwise there exists ideals A and B such that
AB C Q, A¢Z Qand B ¢ Q. Consider the ideals (QUXAX) and (QUXBX).
Since @ is maximal, we have (QU XAX)NM # ¢ and (QU XBX)N M # ¢.
Let p € (QUXAX)N M and s € (QU XBX) N M. Then ps € M. Since
p € (QUXAX) we have p — ¢; = 0 for some g1 € Q or p— riary = 0 for some
r1, 72 € X, for some a € A. And s— g3 = 0 for some ¢5 € Q) or s—r3bry = 0 for
some r3, r4 € X, for some b € B. Since Q, A, B are k-ideals and AB C @, we
have ps € Q. Therefore Q N M # ¢ a contradiction. Hence @ is a prime ideal.
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Now A(z) C Q € X\M C P. By the minimality of P, we have Q@ = X\M = P.
Since M is a multiplicative semigroup, P is a completely prime ideal. a

Remark 22. The above theorem fails if X is not zero-symmetric. Consider
the near-subtraction semigroup in Example 7, where X is not zero-symmetric
and every ideal is a k-ideal. Here 0 is the minimal prime ideal, but it is not
completely prime as ba = 0.

Lemma 23. Let X be a near-subtraction semigroup without nonzero nilpotent
elements. For any a, b in X if e is an idempotent in X then abe = aeb.

Proof. Clearly X has IFP and zy = 0 implies yz = 0 for every z, v in X. Let
e be an idempotent in X. For every a, b in X, since (a — ae)e = 0 we have
(a—ae)be = 0 so that abe —aebe = 0. And (ae—a)e = 0, implies aebe — abe = 0.
Hence abe = aebe, by Lemma 16. Since (eb—ebe)e = 0, we have eb(eb—ebe) = 0
and ebe(eb — ebe) = 0. So that (eb — ebe)? = 0. Hence eb — ebe = 0. Similarly
ebe — eb = 0. Thus eb = ebe and hence abe = aeb. O

Theorem 24. A near-subtraction semigroup X is strongly regqular if and only
if it is reqular and without nonzero nilpotent elements.

Proof. Let X be strongly regular. Suppose a € X such that a? = 0. Since X is
strongly regular there exists some z € X such that a = za? = 0. Thus a® =0
implies a = 0 for every a in X. Hence X is without nonzero nilpotent elements.
Now let us show that X is regular. Let a € X. Then a = za?, for some z € X.
Hence (a — aza)a = 0. Since X is without nonzero nilpotent elements, X has
IFP and ab = 0 implies ba = 0. So a(a — aza) = 0 and aza(a — aza) = 0, so
that (a@ — aza)? = 0 and hence (a — aza) = 0.Thus a — aza = 0. Similarly we
have (aza — a) = 0 and hence a = aza, by Lemma 16.

Conversely, let X be a regular near-subtraction semigroup without nonzero
nilpotent elements. Let ¢ € X. Since X is regular a = aya, for some y € X.
Since ya is an idempotent, by Lemma 23, @ = aya = ayaya = ayyaa = ay?a® =
za?, where = ay?. Thus X is strongly regular. (i

Theorem 25. Let X be a strongly regular near-subtraction semigroup. Then
(a) Xa is an ideal for all a € X.
(b) For every prime ideal P of X there exists no proper k-ideal M such that
Pc M.
(c) Every ideal T of X fulfills I = I?.

Proof. (a) It is obvious that X has no nonzero nilpotent elements so that ab = 0
implies ba = 0 and X has IFP. Let a(# 0) € X such that a = za? for some
z € X. Then (a — aza)a = 0. Hence a(a — aza) = 0 and aza(a — aza) = 0,
so that (@ — aza)? = 0. Thus @ — aza = 0. Similarly axza — a = 0. Hence
a = aza. Let za = e. Then e is an idempotent and Xa = Xe. Denoting the
set {n —neln € X} by S we claim that A(S) = Xe. Since (n — ne)e = 0 for
any n € X using IFP (n —ne)Xe = 0. Hence Xe C A(S). Suppose y € A(S).
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Since X is strongly regular there exists some z € X such that y = zy?. Now
(2y — zye)y = 0. Thus y — ye = 0. Also ((ye — y) — (ye — y)e)y = 0, so that
(ye — y)y = 0. Then y(ye — y) = 0 and ye(ye — y) = 0. Now (ye —y)* = 0 and
hence ye — y = 0. Thus y = ye € Xe and it follows that Xa = Xe = A(S).
Since A(S) is an ideal, Xa is an ideal.

(b) Let P be a prime ideal and suppose P C M where M is a proper k-ideal.
Let a € M\P. Now a = za? for some z € X. For any n € X, na = nza*.
Hence (n — nza)a = 0. Since X has IFP, X(n — nza)Xa = 0. Thus Xa C P
or X(n —nza) C P. Suppose Xa C P. Since a = za® € Xa, we have a € P
a contradiction. Suppose X (n — nza) C P. Then (n — nza) € P C M. Since
a € M and M is a k-ideal, n € M. Thus M = X a contradiction.

{(¢) The proof is obvious. O
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